

Морской биологический журнал Marine Biological Journal 2021, том 6, № 4, с. 31–38 https://doi.org/10.21072/mbj.2021.06.4.03

УДК 582.261.1:[57.083.134:661.336]

ИНТЕНСИВНАЯ КУЛЬТУРА *CYLINDROTHECA CLOSTERIUM* (EHRENBERG) REIMANN ET LEWIN НА ПИТАТЕЛЬНОЙ СРЕДЕ С ГИДРОКАРБОНАТОМ НАТРИЯ

[©] 2021 г. С. Н. Железнова, Р. Г. Геворгиз

ФГБУН ФИЦ «Институт биологии южных морей имени А. О. Ковалевского РАН», Севастополь, Российская Федерация

E-mail: *zheleznovasveta@yandex.ru*

Поступила в редакцию 23.12.2019; после доработки 28.05.2020; принята к публикации 29.09.2021; опубликована онлайн 30.11.2021.

Экспериментально показана возможность использования гидрокарбоната натрия в питательной среде для обеспечения культуры *C. closterium* углеродом в условиях интенсивного культивирования без подачи CO₂ в суспензию. После адаптации *C. closterium* к питательной среде с гидрокарбонатом натрия с концентрацией 1,2 г·л⁻¹ наблюдался активный рост с максимальной продуктивностью 0,6–0,7 г·(л·сут)⁻¹ сухой массы. В клетки диатомовых водорослей углерод проникает как в форме углекислого газа, так и в форме гидрокарбонат-ионов. Однако все питательные среды для искусственного культивирования диатомей по-прежнему предполагают применение СО₂ из атмосферы или баллона. Цель работы — оценить возможность использования гидрокарбоната натрия для обеспечения C. closterium углеродом в условиях интенсивного культивирования без подачи СО₂ в суспензию. Культуру выращивали в режиме накопительного культивирования в колбе объёмом 1 л на питательной среде RS, приготовленной на стерильной черноморской воде, следующего состава (г·л⁻¹): NaNO₃ — 0,775; $NaH_2PO_4 \cdot 2H_2O = 0,0641; Na_2SiO_3 \cdot 9H_2O = 0,386; Na_2EDTA = 0,0872; FeSO_4 \cdot 7H_2O = 0,045;$ $CuSO_4 \cdot 5H_2O = 0.2 \cdot 10^{-3}$; $ZnSO_4 \cdot 7H_2O = 0.44 \cdot 10^{-3}$; $CoCl_2 \cdot 6H_2O = 0.2 \cdot 10^{-3}$; $MnCl_2 \cdot 4H_2O = 0.2 \cdot 10^{-3}$; $MnCl_2 \cdot 10^{-3}$; $MnCl_2 \cdot 4H_2O = 0.2 \cdot 10^{-3}$; $MnCl_2 \cdot 10^{-3}$; $MnCl_2 \cdot 10^{-3}$; $MnCl_2 \cdot 10$ $0,36 \cdot 10^{-3}$; NaMoO₄·H₂O — $0,12 \cdot 10^{-3}$. Предварительно в ней растворили 1,2 г·л⁻¹ гидрокарбоната натрия. Суспензию клеток перемешивали посредством магнитной мешалки (250 оборотов в минуту). На 4-й день эксперимента в культуру добавили 1 г NaHCO₃ и 2 мл 0,1 н соляной кислоты, чтобы снизить pH до 8,6. Со 2-го дня эксперимента зарегистрирован активный рост с максимальной продуктивностью 0,6 г.(л.сут)⁻¹. После добавления в активно растущую культуру 1 г \cdot л⁻¹ гидрокарбоната натрия и снижения pH до 8,6 наблюдали снижение скорости роста практически до нуля, однако, судя по скорости повышения рН среды за время адаптации, культура активно поглощала гидрокарбонат-ионы. Экспериментально показана возможность культивирования бентосной диатомовой водоросли C. closterium на питательной среде с высоким содержанием гидрокарбоната натрия. Установлено, что на питательной среде RS с добавлением 1,2 г·л⁻¹ гидрокарбоната натрия в условиях интенсивного культивирования максимальная продуктивность C. closterium достигает 0,7 г $(\pi \cdot cyr)^{-1}$, при этом отмечено существенное повышение pH среды. По нашим данным, оптимальное значение pH среды для роста С. closterium находится в диапазоне 8,4–9,4. При pH > 9,4 рост диатомовых водорослей замедляется, а при достижении в питательной среде значения рН 9,9 культура переходит в фазу отмирания.

Ключевые слова: питательная среда, культивирование, диатомовые водоросли, гидрокарбонат натрия

Диатомовые водоросли обладают достаточно эффективным углеродконцентрирующим механизмом (Lebeau & Robert, 2003 ; Matsuda et al., 2017 ; Matsuda & Kroth, 2014). По количественному и качественному составу карбоангидраз диатомеи превосходят другие виды водорослей, что позволяет им обитать в разнообразных водоёмах с различной концентрацией CO_2 и HCO_3^- (Lebeau & Robert, 2003 ; Roberts et al., 2007). Как представители вторичного эндосимбиоза (Keeling, 2010), диатомовые водоросли унаследовали способность синтезировать десять уникальных карбоангидраз, принадлежащих к α -, β -, γ - и θ -типу, которые расположены по всему пути транспорта неорганического углерода из окружающей среды в хлоропласт (Berges et al., 2002 ; Jensen et al., 2019 ; Matsuda & Kroth, 2014). Наличие такой структуры в совокупности с циклом мочевины и способностью диатомей к C₄-фотосинтезу в значительной мере снижает потери CO_2 клеткой и позволяет диатомовым водорослям выживать в неблагоприятных условиях (Хорн, 1972 ; Obata et al., 2013 ; Reinfelder et al., 2004).

Известно, что неорганический углерод проникает в клетку преимущественно в виде CO_2 , путём свободной диффузии, а также путём активного транспорта HCO_3^- за счёт энергии АТФ (Lebeau & Robert, 2003 ; Matsuda et al., 2017). Несмотря на то, что о способности диатомовых водорослей использовать гидрокарбонаты известно достаточно давно (Matsuda & Kroth, 2014 ; Matsumoto et al., 2017 ; Obata et al., 2013), все питательные среды для искусственного культивирования диатомей по-прежнему предполагают использование CO_2 из атмосферы или баллона, в том числе для выращивания плотных культур в промышленных масштабах (Lebeau & Robert, 2003 ; Matsumoto et al., 2017 ; Reinfelder et al., 2004). В литературе отсутствуют сведения об адаптивной способности диатомовых водорослей к среде с большими концентрациями гидрокарбонатов и высокими величинами pH, а также нет информации о применении питательных сред с гидрокарбонатами для интенсивного культивирования плотных культур.

C. closterium — один из наиболее удобных объектов исследования среди множества морских диатомовых водорослей. Кроме того, *C. closterium* является перспективным объектом для культивирования в промышленных масштабах. Именно поэтому в данной работе была поставлена цель оценить возможность использования гидрокарбоната натрия для обеспечения *C. closterium* углеродом в условиях интенсивного культивирования без подачи CO_2 в суспензию.

МАТЕРИАЛ И МЕТОДЫ

С. closterium из коллекции культур ФИЦ ИнБЮМ адаптировали к условиям интенсивного культивирования на люминостате в течение двух недель. Культуру выращивали в режиме накопительного культивирования в колбе объёмом 1 л, на питательной среде RS, приготовленной на стерильной черноморской воде, следующего состава ($\Gamma \cdot \pi^{-1}$): NaNO₃ — 0,775; NaH₂PO₄·2H₂O — 0,0641; Na₂SiO₃·9H₂O — 0,386; Na₂EDTA — 0,0872; FeSO₄·7H₂O — 0,045; CuSO₄·5H₂O — 0,2·10⁻³; ZnSO₄·7H₂O — 0,44·10⁻³; CoCl₂·6H₂O — 0,2·10⁻³; MnCl₂·4H₂O — 0,36·10⁻³; NaMoO₄·H₂O — 0,12·10⁻³ (Железнова и др., 2015). Водоросли выращивали при постоянной температуре (20 ± 1) °C и круглосуточном освещении лампами ЛБ 40 со средней облучённостью рабочей поверхности 27 Вт·м⁻² (12 клк). В процессе адаптации культуру барботировали воздухом посредством компрессорной установки (0,5 л воздуха на 1 л культуры в минуту).

Первый этап эксперимента. По достижении плотности культуры в 1 г·л⁻¹ сухой массы часть объёма культуры центрифугировали (3 мин при 1450 g). Удалив надосадочную жидкость, к сырой биомассе добавили свежую питательную среду RS, в которой предварительно растворили 1,2 г·л⁻¹ гидрокарбоната натрия. Полученную суспензию объёмом 1 л и плотностью 1,2 г·л⁻¹ поместили в колбу, установленную на магнитную мешалку. Площадь поверхности суспензии (раздела фаз) составила 50 см². На протяжении всего эксперимента культуру выращивали в накопительном режиме при постоянной скорости перемешивания 250 оборотов в мин. Экспериментальная установка показана на рис. 1.

Ежедневно определяли плотность культуры методом йодатной окисляемости (Геворгиз и др., 2015) и величину pH с точностью 0,01 посредством pH-контроллера Aqua Medic, снабжённого комбинированным электродом.

Второй этап эксперимента. На 4-й день эксперимента в культуру добавили 1 г NaHCO₃ и 2 мл 0,1 н соляной кислоты, чтобы снизить pH до 8,6.

Рис. 1. Культивирование *С. closterium* на питательной среде с гидрокарбонатом натрия как единственным источником углерода

Fig. 1. C. closterium cultivation on a nutrient medium with sodium bicarbonate as the sole carbon source

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Динамика плотности культуры и pH среды́ представлена на рис. 2. На первом этапе эксперимента культуру в течение суток адаптировали к питательной среде с гидрокарбонатом натрия; при этом часть клеток погибла, о чём свидетельствует снижение плотности культуры до 0,9 г·л⁻¹ и величины́ pH среды́ до 8,77. Со 2-го дня эксперимента отмечен активный рост культуры с максимальной продуктивностью 0,6 г·(л·сут)⁻¹. Этому росту сопутствовало значительное повышение pH среды́, то есть клетки активно ассимилировали углерод в форме HCO₃⁻. После добавления в активно растущую культуру 1 г·л⁻¹ гидрокарбоната натрия и снижения pH до 8,6 на втором этапе эксперимента зарегистрировано снижение скорости роста культуры практически до нуля, однако, судя по скорости повышения pH среды́ за время адаптации, культура активно поглощала гидрокарбонат-ионы (рис. 2). После адаптации наблюдался активный рост культуры с максимальной продуктивностью 0,7 г·(л·сут)⁻¹, который также сопровождался высокой скоростью защелачивания среды́. При достижении pH среды́ 9,4 рост культуры замедлился, при pH = 9,9 полностью прекратился. Спустя сутки отмечен переход культуры в фазу отмирания.

Рис. 2. Динамика плотности культуры при использовании бикарбоната натрия в качестве единственного источника углерода (А) и динамика pH в процессе культивирования (В). Пунктирная линия указывает момент добавления в культуру 1 г NaHCO₃ и снижения pH среды́ до 8,6

Fig. 2. Dynamics of the culture density when using sodium bicarbonate as the sole source of carbon (A) and pH dynamics during cultivation (B). The dotted line indicates the moment of adding 1 g of NaHCO₃ to the culture and lowering pH down to 8.6

На основании полученных результатов и с учётом того факта, что в питательной среде при pH > 8,4 практически отсутствует растворённый углекислый газ (Краткая химическая энциклопедия, 1961; Сонненфелд, 1988; Хорн, 1972), можно утверждать, что культура *C. closterium* активно росла, поглощая ионы HCO_3^- из питательной среды (Куприянова и Самылина, 2015). Таким образом, в питательных средах для интенсивного культивирования морских диатомовых водорослей вполне возможно использование NaHCO₃ (1 г·л⁻¹ и более) в качестве единственного источника углерода.

Составим предельную оценку для урожая, полученного на питательной среде с гидрокарбонатом натрия. В общем случае, когда биогенный элемент из растворённой неорганической соли полностью, без потерь преобразуется в органическую массу, причём потери, связанные с синтезом экзометаболитов, также отсутствуют, максимально возможный урожай (B_{MAX}) составит:

$$B_{MAX} = \frac{M(S)}{Y_S \cdot M(SX)} \cdot m(SX) , \qquad (1)$$

где Y_S — доля биогенного элемента в биомассе;

M(S) и M(SX) — молярная масса биогенного элемента и соли, содержащей биогенный элемент, соответственно, г·моль⁻¹;

m(SX) — масса соли, растворённой в питательной среде, г·л⁻¹.

Углерод в биомассе многих видов микроводорослей составляет примерно 50 % (Хорн, 1972; Allen et al., 2011). Однако из-за большой доли зольного остатка в биомассе у бентосных диатомовых водорослей эта величина колеблется в значительных пределах (Anderson, 1995; Brown & Jeffrey, 1995). Из литературы известно, что в фазе активного роста в состав биомассы микроводорослей *Cylindrotheca* sp. входят: суммарные белки — 41 % от сухой массы (Brown & Jeffrey, 1995; Brown et al., 1997); углеводы — 25 % (Gügi et al., 2015; Nesara & Bedi, 2019); липиды — 1 % (Ying & Kangsen, 2005). Если учесть, что доля углерода в белках в среднем составляет 52 %, в углеводах 40 %, а в липидах 75 % (Краткая химическая энциклопедия, 1961), можно считать, что доля углерода в органической части биомассы *C. closterium* составляет 48 %.

С учётом доли зольного остатка у микроводорослей выражение (1) принимает вид:

$$B_{MAX} = \frac{M(C)}{(1-z) \cdot Y_C^{\text{OPF}} \cdot M(NaHCO_3)} \cdot m(NaHCO_3) , \qquad (2)$$

где z — доля зольного остатка в биомассе;

Y_C^{OPГ} — доля углерода в органической части биомассы;

M(C) и $M(NaHCO_3)$ — молярная масса углерода и гидрокарбоната натрия соответственно, г·моль⁻¹;

 $m(NaHCO_3)$ — масса гидрокарбоната натрия, растворённого в питательной среде, г·л⁻¹.

По нашим данным, доля зольного остатка в биомассе *C. closterium* составляет 33 % (Геворгиз и др., 2015); в эксперименте навеска NaHCO₃, растворённая в питательной среде, — $1,2 \ r \cdot \pi^{-1}$. Следовательно, подставляя эти величи́ны в (2), можно увидеть, что максимальный прирост биомассы (урожай, В_{MAX}) составит 0,53 $r \cdot \pi^{-1}$. Если учесть углерод (суммарный углерод в форме HCO₃⁻ и CO₃²), содержащийся в черноморской воде, концентрация которого достигает 0,007 $r \cdot \pi^{-1}$ (Краткая химическая энциклопедия, 1961), В_{MAX} составит 0,575 $r \cdot \pi^{-1}$.

В эксперименте за 4 суток урожай составил 1,2 г·л⁻¹ (см. рис. 2А), что более чем вдвое превышает предельную оценку. С другой стороны, в питательную среду добавлено 1,2 г NaHCO₃, но если в эксперименте прирост составил 1,2 г·л⁻¹ сухой массы водорослей, то с учётом углерода в черноморской воде должно быть затрачено минимум 2,66 г NaHCO₃. Это следует из того, что в 1,2 г биомассы органическая часть составляет 1,2 × (1 – 0,33) = 0,8 г; доля углерода в органической части — 0,8 × 0,48 = 0,384 г; доля углерода в NaHCO₃ — 14,3 %. Необходимо учесть и тот факт, что в питательной среде при pH > 8,4 из-за гидролиза гидрокарбонат-ионов (Скопинцев, 1975 ; Сонненфелд, 1988 ; Хорн, 1972) равновесие

$$\mathrm{HCO}_{3}^{-} + \mathrm{HO}^{-} + \mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{CO}_{3}^{2-} \tag{3}$$

смещено вправо, в сторону образования CO_3^{2-} , то есть в питательной среде при высоких значениях pH часть углерода находится в недоступной для фотосинтеза форме (Куприянова и Самылина, 2015 ; Jansson & Northen, 2010). Следовательно, заведомо не весь углерод из соли NaHCO₃, растворённой в питательной среде, поглотился клетками для фотосинтеза; часть углерода в карбонатной форме осталась в питательной среде.

Оценим количество NaHCO₃, которое необходимо затратить для прироста 1,2 г биомассы при значении pH среды́ > 8,4. Известно, что клетки фототрофов при поглощении 1 моля гидрокарбонат-ионов HCO₃⁻ для фотосинтеза в питательную среду выделяют 1 моль гидроксидионов OH⁻ (Jansson & Northen, 2010), что приводит к смещению равновесия (3) вправо и к образованию 1 моля карбонат-ионов CO₃²⁻. Таким образом, убыль HCO₃⁻ в питательной среде связана не только с изъятием гидрокарбонат-ионов клетками для фотосинтеза, но и с образованием в питательной среде карбонат-ионов. Поэтому, чтобы получить 1,2 г биомассы, необходимо затратить минимум 1,2 × (1 – 0,33) × 0,48 / 0,143 × 2 = 5,4 г NaHCO₃, что более чем в 4 раза превышает навеску гидрокарбоната натрия, растворённого в питательной среде, в эксперименте.

Такое явное несоответствие связано, возможно, с тем, что в культуральной среде активно растворялся атмосферный CO₂. Несмотря на то, что удельная поверхность раздела фаз в эксперименте была небольшой, скорость растворения углекислоты в питательной среде была достаточной для интенсивного роста *C. closterium*. Со 2-го по 4-й день эксперимента прирост составил 1,2 г·л⁻¹ биомассы (см. рис. 2А); 1,2 г сухой биомассы *С. closterium* содержит 0,387 г органического углерода. В питательную среду было внесено 0,171 г·л⁻¹ неорганического углерода. Следовательно, за двое суток в питательной среде растворилось минимум 0,387 – 0,171 = 0,216 г углерода, или 0,4 г·(л·сут)⁻¹ CO₂. Отметим, что данная оценка носит приближённый характер; для расчёта скорости поглощения атмосферного CO₂ культурой *С. closterium* в дальнейшем необходимо проведение специальных исследований.

Заключение. Экспериментально показана возможность культивирования бентосной диатомовой водоросли *C. closterium* на питательной среде с высоким содержанием гидрокарбоната натрия. Установлено, что на питательной среде RS с добавлением $1,2 \ r \cdot \pi^{-1}$ гидрокарбоната натрия в условиях интенсивного культивирования продуктивность *C. closterium* достигает $0,7 \ r \cdot (\pi \cdot \text{сут})^{-1}$, при этом отмечено значительное повышение pH среды́. По нашим данным, оптимальное значение pH среды́ для роста *C. closterium* находится в диапазоне 8,4-9,4. При pH > 9,4 рост диатомовых водорослей замедляется, а при достижении pH = 9,9 культура переходит в фазу отмирания.

Разработка питательных сред с гидрокарбонатом натрия для интенсивного культивирования диатомовых водорослей является перспективной задачей, поскольку в значительной мере облегчает обеспечение культуры углеродом, особенно в промышленных масштабах. Добавление гидрокарбонатов в питательную среду способствует увеличению буферности системы и исключает резкие изменения pH, а также потери углерода в виде CO_2 . Кроме того, использование питательных сред с гидрокарбонатами не исключает процессов абсорбции CO_2 из атмосферы даже при малой площади раздела фаз. По данным эксперимента, во время активного роста культура получала минимум 50 % атмосферного углерода.

Работа выполнена в рамках государственного задания ФИЦ ИнБЮМ по теме «Исследование механизмов управления продукционными процессами в биотехнологических комплексах с целью разработки научных основ получения биологически активных веществ и технических продуктов морского генезиса» (№ гос. регистрации 121030300149-0) и при финансовой поддержке гранта РФФИ № 18-34-00672.

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

- Геворгиз Р. Г., Железнова С. Н., Никонова Л. Л., Бобко Н. И., Нехорошев М. В. Оценка плотности культуры фототрофных микроорганизмов методом йодатной окисляемости. Севастополь : ФГБУН ИМБИ, 2015. 31 с. [Gevorgiz R. G., Zheleznova S. N., Nikonova L. L., Bobko N. I., Nekhoroshev M. V. Otsenka plotnosti kul'tury fototrofnykh mikroorganizmov metodom iodatnoi okislyaemosti. Sevastopol : FGBUN IMBI, 2015, 31 p. (in Russ.)]. https://repository.marine-research.org/handle/299011/43
- 2. Железнова С. Н., Геворгиз Р. Г., Бобко Н. И., Лелеков А. С. Питательная среда для интенсивной культуры лиатомовой водо-Cylindrotheca росли closterium (Ehrenb.) Reimann et Lewin – перспективного объекта биотехнологий // Актуальная биотехнология. 2015. № 3 (14). C. 46-48. [Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The culture medium for the intensive culture of diatomic alga Cylindrotheca closterium (Ehrenb.)

Reimann et Lewin – promising biotech facility. *Aktual'naya biotekhnologiya*, 2015, no. 3 (14), pp. 46–48. (in Russ.)]

- Куприянова Е. В., Самылина О. С. СО₂концентрирующий механизм и его особенности у галоалкалофильных цианобактерий // Микробиология. 2015. Т. 84, № 2. С. 144–159. [Kupriyanova E. V., Samylina O. S. CO₂-concentrating mechanism and its traits in haloalkaliphilic cyanobacteria. Mikrobiologiya, 2015, vol. 84, no. 2, pp. 144–159. (in Russ.)]. https://doi.org/10.7868/S0026365615010073
- Краткая химическая энциклопедия / ред. И. Л. Кнунянц. Москва : Советская энциклопедия, 1961. 931 с. [Kratkaya khimicheskaya entsiklopediya / I. L. Knunyants (Ed.). Moscow : Sovetskaya entsiklopediya, 1961, 931 p. (in Russ.)]
- 5. Скопинцев Б. А. Формирование современного химического состава вод Чёрного моря. Ленинград : Гидрометеоиздат, 1975. 336 с. [Skopintsev B. A. Formirovanie sovremennogo

khimicheskogo sostava vod Chernogo morya. Leningrad : Gidrometeoizdat, 1975, 336 p. (in Russ.)]

- 6. Сонненфелд П. *Рассолы и эвапориты* : пер. с англ. Москва : Мир, 1988. 480 с. [Sonnenfeld P. *Pickles and Evaporates*. Moscow : Mir, 1988, 480 p. (in Russ.)]
- Хорн Р. А. Морская химия (структура воды и химия гидросферы) : пер. с англ. Москва : Мир, 1972. 400 с. [Horne R. A. Marine Chemistry: The Structure of Water and the Chemistry of the Hydrosphere. Moscow : Mir, 1972, 400 p. (in Russ.)]
- Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J. P., Zheng H., Johnson D. A., Hu H., Fernie A. R., Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. *Nature*, 2011, vol. 473, iss. 7346, pp. 203–207. https://doi.org/10.1038/nature10074
- Anderson L. A. On the hydrogen and oxygencontent of marine phytoplankton. *Deep Sea Research Part I: Oceanographic Research Papers*, 1995, vol. 42, iss. 9, pp. 1675–1680. https://doi.org/10.1016/0967-0637(95)00072-E
- Berges J. A., Varela D. E., Harrison P. J. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom *Thalassiosira pseudonana* (Bacillariophyceae). *Marine Ecology Progress Series*, 2002, vol. 225, pp. 139–146. https://doi.org/10.3354/meps225139
- Brown M. R., Jeffrey S. W. The amino acid and gross composition of marine diatoms potentially useful for mariculture. *Journal of Applied Phycology*, 1995, vol. 7, iss. 6, pp. 521–527. https://doi.org/10.1007/BF00003938
- Brown M. R., Jeffrey S. W., Volkman J. K., Dunstan G. A. Nutritional properties of microalgae for mariculture. *Aquaculture*, 1997, vol. 151, iss. 1–4, pp. 315–331. https://doi.org/10.1016/S0044-8486(96)01501-3
- Gügi B., Le Costaouec T., Burel C., Lerouge P., Helbert W., Bardor M. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. *Marine Drugs*, 2015, vol. 13, iss. 9, pp. 5993–6018. https://doi.org/10.3390/md13095993
- 14. Jansson C., Northen T. Calcifying cyanobacteria The potential of biomineralization for carbon

capture and storage. *Current Opinion in Biotechnology*, 2010, vol. 21, iss. 3, pp. 365–371. https://doi.org/10.1016/j.copbio.2010.03.017

- Jensen E. L., Clement R., Kosta A., Maberly S. C., Gontero B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. *The ISME Journal*, 2019, vol. 13, pp. 2094–2106. https://doi.org/10.1038/s41396-019-0426-8
- Keeling P. J. The endosymbiotic origin, diversification and fate of plastids. *Philosophical Transactions of the Royal Society B*, 2010, vol. 365, iss. 1541, pp. 729–748. https://doi.org/10.1098/rstb.2009.0103
- Lebeau T., Robert J.-M. Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. *Applied Microbiology and Biotechnology*, 2003, vol. 60, iss. 6, pp. 612–623. https://doi.org/10.1007/s00253-002-1176-4
- Matsuda Y., Hopkinson B. M., Nakajima K., Dupont C. L., Tsuji Y. Mechanisms of carbon dioxide acquisition and CO₂ sensing in marine diatoms: A gateway to carbon metabolism. *Philosophical Transactions of the Royal Society B*, 2017, vol. 372, art. no. 20160403 (12 p.). https://doi.org/10.1098/rstb.2016.0403
- Matsuda Y., Kroth P. G. Carbon fixation in diatoms. In: *The Structural Basis of Biological Energy Generation /* M. F. Hohmann-Marriott (Ed.). Dordrecht, Heidelberg : Springer, 2014, pp. 335–362. (Advances in Photosynthesis and Respiration ; vol. 39.)
- Matsumoto M., Nojima D., Nonoyama T., Ikeda K., Maeda Y., Yoshino T., Tanaka T. Outdoor cultivation of marine diatoms for yearround production of biofuels. *Marine Drugs*, 2017, vol. 15, no. 4, art. no. 94 (12 p.). https://doi.org/10.3390/md15040094
- Nesara K. M., Bedi C. S. Diatomix: A diatoms enhancer. *Journal of FisheriesSciences.com*, 2019, vol. 13, iss. 2, pp. 12–15. https://www.fisheriessciences.com/fisheries-aqua/ diatomix-a-diatoms-enhancer.pdf
- Obata T., Fernie A. R., Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. *Metabolites*, 2013, vol. 3, iss. 2, pp. 325–346. https://doi.org/10.3390/metabo3020325
- 23. Reinfelder J. R., Milligan A. J., Morel F. M. The role of the C_4 pathway in carbon accumulation and fixation in a marine diatom. *Plant Physiology*,

2004, vol. 135, iss. 4, pp. 2106–2111. https://doi.org/10.1104/pp.104.041319

- Roberts K., Granum E., Leegood R. C., Raven J. A. Carbon acquisition by diatoms. *Photosynthesis Research*, 2007, vol. 93, iss. 1–3, pp. 79–88. https://doi.org/10.1007/s11120-007-9172-2
- 25. Ying L., Kangsen M. Effect of growth phase on the fatty acid compositions of four species of marine diatoms. *Journal* of Ocean University of China, 2005, vol. 4, iss. 2, pp. 157–162. https://doi.org/10.1007/ s11802-005-0010-x

INTENSIVE CULTURE OF CYLINDROTHECA CLOSTERIUM (EHRENBERG) REIMANN ET LEWIN ON THE NUTRIENT MEDIUM WITH SODIUM BICARBONATE

S. N. Zheleznova and R. G. Gevorgiz

A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russian Federation E-mail: *zheleznovasveta@yandex.ru*

The possibility is shown experimentally of using sodium bicarbonate in a nutrient medium to provide C. closterium culture with carbon under conditions of intensive cultivation without supplying CO₂ to the suspension. After C. closterium adaptation to a nutrient medium with sodium bicarbonate with a concentration of 1.2 $g \cdot L^{-1}$, active growth is observed, with a maximum productivity of 0.6–0.7 g $(L \cdot day)^{-1}$ of dry weight. Carbon penetrates into diatom cells both in the form of carbon dioxide and bicarbonate ions. However, all nutrient media for artificial cultivation of diatoms still require using CO_2 from the atmosphere or from a gas cylinder. The aim of this work is to assess the possibility of using sodium bicarbonate to provide *C. closterium* with carbon under conditions of intensive cultivation without supplying CO2 to the suspension. The culture was grown in the mode of accumulative cultivation in a 1-L flask on the RS nutrient medium prepared with sterile Black Sea water; its composition was as follows $(g:L^{-1})$: NaNO₃ – 0.775; NaH₂PO₄·2H₂O – 0.0641; Na₂SiO₃·9H₂O – 0.386; Na₂EDTA – 0.0872; FeSO₄·7H₂O – 0.045; CuSO₄·5H₂O – 0.2·10⁻³; ZnSO₄·7H₂O – 0.44·10⁻³; CoCl₂·6H₂O – 0.2·10⁻³; MnCl₂·4H₂O – 0.36·10⁻³; and NaMoO₄·H₂O – 0.12·10⁻³. Previously, 1.2 g·L⁻¹ of sodium bicarbonate was dissolved there. Cell suspension was stirred with a magnetic stirrer (250 rpm). On the 4th day of the experiment, 1 g of NaHCO₃ and 2 mL of 0.1 N hydrochloric acid were added to the culture in order to lower the medium pH down to 8.6. From the 2nd day of the experiment, active growth was observed, with a maximum productivity of 0.6 g $(L day)^{-1}$. After adding 1 g L^{-1} of sodium bicarbonate to the actively growing culture and lowering pH down to 8.6, the growth rate approached almost zero, but considering the increase rate of the medium pH during adapta-tion, the culture actively absorbed bicarbonate ions. The possibility of cultivating the benthic diatom *C. closterium* on a nutrient medium with a high sodium bicarbonate content is experimentally shown. As found, on the RS nutrient medium with $1.2 \text{ g} \cdot \text{L}^{-1}$ of sodium bicarbonate added under conditions of intensive cultivation, *C. closterium* maximum productivity reaches $0.7 \text{ g} (\text{L} \text{ day})^{-1}$, with a significant increase in the medium pH. According to our data, optimal medium pH for *C. closterium* growth is in the range of 8.4–9.4. At higher values (pH > 9.4), the growth of diatoms slows down; at pH = 9.9, the culture enters the dying phase.

Keywords: nutrient medium, cultivation, diatoms, sodium bicarbonate