Ladygina L. V., Pirkova A. V. Cultivation of the diatom algae Chaetoceros calcitrans f. pumilus (Paulsen) Takano, 1968 as food for giant oyster larvae Crassostrea gigas (Thunberg). Marine Biological Journal, 2019, vol. 4, no. 2, pp. 34-40. https://doi.org/10.21072/mbj.2019.04.2.04



An impact of modified nutrient media F/2 and Conway on the growth and biomass accumulation of the diatom algae Chaetoceros calcitrans f. pumilus, which is a part of the food for cultivated larvae of the giant oyster Crassostrea gigas in the IMBR RAS nursery, was studied. Maximum values of cell and biomass concentrations were obtained on the modified F/2 nutrient medium (11.22 × 106 cells·ml-1 and 4.93 g·l-1, respectively), and they were much larger than those obtained on Conway medium. Growth parameters of C. calcitrans f. pumilus depended on the ratio of inorganic nitrogen and phosphorus, as well as on the silicon content in nutrient media. The ratio N : P = 12.5 and the silicon concentration of 24 mg·l-1 in the modified F/2 nutrient medium are shown to be approaching the optimal ones for increasing growth rate of diatom algae. It is found that the microalga in concentration 150 × 103 cells·ml-1, cultivated on different nutrient media and included in food composition, has impact on the growth rate of giant oyster larvae. An average daily amount of growth of larvae, whose diet included algae cultivated on modified F/2 nutrient medium, was higher than that of larvae cultivated on Conway medium.


L. V. Ladygina



A. V. Pirkova




Пиркова А. В., Ладыгина Л. В. Определение оптимальных условий роста и выживаемости личинок устрицы Crassostrea gigas (Th.) // Рыбное хозяйство Украины. 2004. Спец. вып. 7. С. 174–177. [Pirkova A. V., Ladygina L. V. Opredelenie optimalnykh uslovii rosta i vyzhivaemosti lichinok ustritsy Crassostrea gigas (Th.). Rybnoe khozyaistvo Ukrainy, 2004, suppl. 7, pp. 174–177. (in Russ.)]

Стельмах Л. В., Мансурова И. М. Эколого-физиологические основы биоразнообразия фитопланктона Чёрного моря // Экосистемы, их оптимизация и охрана. 2012. Вып. 7. С. 149–158. [Stel’makh L. V., Mansurova I. M. Ecological and physiological basis of phytoplankton biodiversity in the Black Sea. Ekosistemy, ikh optimizatsiya i okhrana, 2012, iss. 7, pp. 149–158. (in Russ.)]

Тренкеншу Р. П. Простейшие модели роста микроводорослей. 1. Периодические культуры // Экология моря. 2005. Вып. 67. С. 89–97. [Trenkenshu R. P. Simplest models of microalgae growth. 1. Batch culture. Ekologiya morya, 2005, iss. 67, pp. 89–97. (in Russ.)]

Холодов В. И., Пиркова А. В., Ладыгина Л. В. Выращивание мидий и устриц в Чёрном море / ред. В. И. Рябушко ; 2-е изд., доп. Воронеж : ООО «Издат-Принт», 2017. 508 с. [Kholodov V. I., Pirkova A. V., Ladygina L. V. Vyrashchivanie midii i ustrits v Chernom more / V. I. Ryabushko (Ed.) ; 2-e izd., dop. Voronezh: OOO “Izdat-Print”, 2017, 508 p. (in Russ.)]

Banerjee S., Hew W. E., Khatoon H., Shariff M., Yusoff F. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African Journal of Biotechnology, 2011, vol. 10, no. 8, pp. 1375–1383.

Bindhu K. B. Optimum nutritional requirement for the growth of Chaetoceros сalcitrans. Research Journal Marine Science, 2013, vol. 1, no. 3, pp. 1–9.

Brown M. R., Jeffrey S. W., Volkman J. K., Dunstan G. A. Nutritional properties of microalgae for mariculture. Aquaculture, 1997, vol. 151, iss. 1–4, pp. 315–331. https://doi.org/10.1016/S0044-8486(96)01501-3

Helm M., Bourne N. Hatchery culture of bivalves. A practical manual. Rome: Food and Agriculture Organization of the United Nations, 2004, 177 p. (FAO Fisheries Technical Paper ; no. 471).

Kaspar H. F., Keys E. F., Smith K. F., Kesarcodi-Watson A., Miller M. R. Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 2014, vol. 420–421, pp. 1–9. https://doi.org/10.1016/j.aquaculture.2013.10.021

Кhoi C. M., Guong V. T., Hoa N. V., Sorgeloos P., Merckx R. Growth of Chaetoceros calcitransin sediment extracts from Artemia franciscana culture ponds points to phosphorus limitation. Journal of the World Aquaculture Society, 2009, vol. 40, iss. 1, pp. 104–112. https://doi.org/10.1111/j.1749-7345.2008.00237.x

Lai J. I., Yusoff F. M., Shariff M. Large-scale culture of a tropical marine microalga Chaetoceros calcitrans (Paulsen) Takano, 1968 at different temperatures using annular photobioreactors. Pakistan Journal of Biology Science, 2012, vol. 15, no. 13, pp. 635–640. http://doi.org/10.3923/pjbs.2012.635.640

Laing I. Growth response of Chaetoceros calcitrans (Bacillariophyceae) in batch culture to a range of initial silica concentrations. Marine Biology, 1985, vol. 85, iss. 1, pp. 37–41. https://doi.org/10.1007/BF00396412

Ponis E., Robert R., Parisi P. Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 2003, vol. 221, iss. 1–4, pp. 491–505. http://doi.org/10.1016/S0044-8486(03)00075-9

Vonshak A. Laboratory techniques for the culturing of mircoalgae. In: Handbook of microalgae mass culture / Richmond A. (Ed.). Boca Raton, Florida: CRC Press, 1986, pp. 117–146.


This work was carried out within the framework of IMBR state research assignment No. АААА-А18-118021350003-6.



Download data is not yet available.