Resistance to negative effects and the ratio of energy metabolism enzyme activity in tissues of the Black Sea molluscs Mytilus galloprovincialis Lamarck, 1819 and Anadara kagoshimensis (Tokunaga, 1906)
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
Determining the ratio of energy metabolism enzyme activity of malate dehydrogenase (MDH, 1.1.1.37) and lactate dehydrogenase (LDH, 1.1.1.27) allows getting the cumulative assessment of the physiological condition of the object of study in response to the impact of different nature. The aim of the study was to compare the change of value of MDH/LDH ratio in the tissues of bivalve molluscs: native mussel Mytilus galloprovincialis and successful invader Anadara kagoshimensis – in laboratory conditions under the effect of hypoxia, anoxia, PCBs, hydrogen sulfide contamination and long-term maintenance in the aquarium without feeding. Sexually mature molluscs were collected near Sevastopol. Shell length of a mussel was 45–62 mm, of anadara – 27–49 mm. Enzyme activity was measured spectrophotometrically (at 340 nm and 25 °C) by the rate of NADH oxidation in the cytoplasm of tissues (muscles, hepatopancreas, gills). Under the effect of negative factors, as a rule, LDH activity decreased significantly (by 36–80 %), MDH activity remained stable, and MDH/LDH ratio in the tissues of both species of molluscs increased 1.5–4 times. However, in the tissues of hemoglobin-containing anadara the ratio was 10 times lower than that of mussels, both in control and in the experiment. Comparison with literature data showed that tolerant to hypoxia mollusc-invader had the same low MDH/LDH ratio as oxyphilic hydrobionts: scallop Mizuhopecten yessoensis (Jay, 1857), crustaceans Crangon crangon (Linnaeus, 1758) and Carcinus aestuarii Nardo, 1847. Apparently, the low MDH/LDH ratio reflects the ability of anadara to maintain a high level of oxidizing processes in the tissues due to the content in them of a significant pool of erythrocyte hemoglobin, carotenoids, glutathione, which support the aerobic process and implement antioxidant protection. The ratio of the activity of MDH/LDH can be used in monitoring studies to assess the degree of oxygenation of molluscs tissues in normal and hypoxic conditions of different origin.
Authors
References
Андреенко Т. И., Солдатов А. А., Головина И. В. Адаптивная реорганизация метаболизма у двустворчатого моллюска Anadara inaequivalvis Bruguiere в условиях экспериментальной аноксии // Доповіді НАН України. 2009. № 7. С. 155–160. [Andreenko T. I., Soldatov A. A., Golovina I. V. Adaptivnaya reorganizatsiya metabolizma u dvustvorchatogo mollyuska Anadara inaequivalvis Bruguiere v usloviyakh eksperimental’noi anoksii. Dopovidi NAN Ukrainy, 2009, no. 7, pp. 155–160. (in Russ.)]
Бочко О. Ю., Солдатов А. А. Распределение полихлорированных бифенилов в тканях мидии Mytilus galloprovincialis Lam. в естественных и экспериментальных условиях // Экология моря. 2006. Вып. 71. С. 68–72. [Bochko O. Yu., Soldatov A. A. Polychlorinated biphenyls distribution in the tissues of Mytilus galloprovincialis Lam. from natural population and under experimental conditions. Ekologiya morya, 2006, iss. 71, pp. 68–72. (in Russ.)]
Головина И. В. Особенности активности ферментов энергетического обмена в тканях черноморских моллюсков разной подвижности в норме и при патологии // Морской биологический журнал. 2016. Т. 1, № 1. С. 14–23. [Golovina I. V. Peculiarities of energy metabolism enzymes activity in tissues of Black Sea molluscs of different mobility in norm and at pathology. Morskoj biologicheskij zhurnal, 2016, vol. 1, no. 1, pp. 14–23. (in Russ.)]. https://doi.org/10.21072/mbj.2016.01.1.02
Горомосова С. А., Шапиро А. З. Основные черты биохимии энергетического обмена у мидий. Москва : Лёгкая и пищевая промышленность, 1984. 120 с. [Goromosova S. A., Shapiro A. Z. Osnovnye cherty biokhimii energeticheskogo obmena u midii. Moscow: Legkaya i pishchevaya promyshlennost’, 1984, 120 p. (in Russ.)]
Ильин В. С., Замосковская Г. А., Усатенко М. С. Влияние денервации и реиннервации на лактатдегидрогеназу и малатдегидрогеназы в скелетных мышцах кролика // Журнал эволюционной биохимии и физиологии. 1974. Т. 10, № 1. С. 10–16. [Il’in V. S., Zamoskovskaya G. A., Usatenko M. S. The effect of denervation and re-innervation on lactate and malate dehydrogenases in rabbit skeletal muscles. Zhurnal evolyutsionnoi biokhimii i fiziologii, 1974, vol. 10, no. 1, pp. 10–16. (in Russ.)]
Кудрявцева Г. В., Шишкин В. И. Надёжность и качество ферментативных функциональных систем. Санкт-Петербург : Изд-во СПб ун-та, 1996. 68 с. [Kudryavtseva G. V., Shishkin V. I. Nadezhnost’ i kachestvo fermentativnykh funktsional’nykh sistem. Saint Petersburg: Izd-vo SPb un-ta, 1996, 68 p. (in Russ.)]
Кулаев Б. С. Эволюция систем поддержания гомеостазиса клетки – основа прогрессивной эволюции клетки // Журнал эволюционной биохимии и физиологии. 1997. Т. 33, № 1. С. 82–99. [Kulaev B. S. Evolution of cell homeostasis supporting systems as the basis of progressive evolution of organisms. Zhurnal evolyutsionnoi biokhimii i fiziologii, 1997, vol. 33, no. 1, pp. 82–99. (in Russ.)]
Мильман Л. С., Юровецкий Ю. Г., Ермолаева Л. П. Определение активности важнейших ферментов углеводного обмена // Методы биологии развития. Москва : Наука, 1974. С. 346–364. [Mil’man L. S., Yurovetskii Yu. G., Ermolaeva L. P. Opredelenie aktivnosti vazhneishikh fermentov uglevodnogo obmena. In: Metody biologii razvitiya. Moscow: Nauka, 1974, pp. 346–364. (in Russ.)]
Немова Н. Н., Мещерякова О. В., Лысенко Л. А., Фокина Н. Н. Оценка состояния водных организмов по биохимическому статусу // Труды КарНЦ РАН. 2014. № 5. С. 18–29. [Nemova N. N., Meshcheryakova O. V., Lysenko L. A., Fokina N. N. The assessment of the fitness of aquatic organisms relying on the biochemical status. Trudy KarNTs RAN, 2014, no. 5, pp. 18–29. (in Russ.)]
Олифиренко А. Б. Условия формирования поселений двустворчатого моллюска Anadara broughtoni в заливе Петра Великого (Японское море) // Известия ТИНРО. 2007. Т. 149. С. 122–137. [Olifirenko A. B. Usloviya formirovaniya poselenii dvustvorchatogo mollyuska Anadara broughtoni v zalive Petra Velikogo (Yaponskoe more). Izvestiya TINRO, 2007, vol. 149, pp. 122–137. (in Russ.)]
Финенко Г. А., Аболмасова Г. И. Особенности энергетического бюджета мидий в Севастопольской бухте // Биология моря. 1992. Т. 18, № 1–2. С. 43–51. [Finenko G. A., Abolmasova G. I. Osobennosti energeticheskogo byudzheta midii v Sevastopol’skoi bukhte. Biologiya morya, 1992, vol. 18, no. 1–2, pp. 43–51. (in Russ.)]
Черноморские моллюски: элементы сравнительной и экологической биохимии / под ред. Г. Е. Шульмана, А. А. Солдатова ; Ин-т биологии южных морей НАН Украины. Севастополь : ЭКОСИ-Гидрофизика, 2014. 323 с. [Black Sea mollusks: Elements of comparative and environmental biochemistry. G. E. Shul’man, A. A. Soldatov (Eds) ; In-t biologii yuzhnykh morei NAN Ukrainy. Sevastopol: EKOSI-Gidrofizika, 2014, 323 p. (in Russ.)]
Aly H. A. A., Domènech Ò. Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes. Toxicology, 2009, vol. 262, iss. 3, pp. 175–183. https://doi.org/10.1016/j.tox.2009.05.018
Bishop R. E., Kakuk B., Torres J. J. Life in the hypoxic and anoxic zones: Metabolism and proximate composition of Caribbean troglobitic crustaceans with observations on the water chemistry of two anchialine caves. Journal of Crustacean Biology, 2004, vol. 24, iss. 3, pp. 379–392. https://doi.org/10.1651/C-2459
Emeretli I. V. Influence of hypoxia of varying duration on malate dehydrogenase and lactate dehydrogenase activities in the tissues of mussel. Hydrobiological Journal, 2002, vol. 38, iss. 3, pp. 50–56. https://doi.org/10.1615/HydrobJ.v38.i3.50
Emeretli I. V., Rusinova O. S. The activities of enzymes of the main pathways of carbohydrates oxidation in fish tissues. Hydrobiological Journal, 2002, vol. 38, iss. 2, pp. 70–79. https://doi.org/10.1615/HydrobJ.v38.i2.70
Gainey L. F. Jr., Greenberg M. J. Hydrogen sulfide is synthesized in the gills of the clam Mercenaria mercenaria and acts seasonally to modulate branchial muscle contraction. The Biological Bulletin, 2005, vol. 209, no. 1, pp. 11–20. https://doi.org/10.2307/3593138
Golovina I. V., Gostyukhina O. L., Andreyenko T. I. Specific metabolic features in tissues of the ark clam Anadara kagoshimensis Tokunaga, 1906 (Bivalvia: Arcidae), a Black Sea invader. Russian Journal of Biological Invasions, 2016, vol. 7, iss. 2, pp. 137–145. https://doi.org/10.1134/S2075111716020065
Grieshaber M. K., Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review of Physiology, 1998, vol. 60, pp. 33–53. https://doi.org/10.1146/annurev.physiol.60.1.33
Hildebrandt T. M., Grieshaber M. K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. The FEBS Journal, 2008, vol. 275, iss. 13, pp. 3352–3361. https://doi.org/10.1111/j.1742-4658.2008.06482.x
Hochachka P. W., Somero G. N. Biochemical adaptation: Mechanism and process in physiological evolution. Oxford: Oxford University Press, 2002, 356 p.
Kabil O., Motl N., Banerjee R. H2S and its role in redox signaling. Biochimica et Biophysica Acta, 2014, vol. 1844, iss. 8, pp. 1355–1366. https://doi.org/10.1016/j.bbapap.2014.01.002
Larade K., Storey K. B. A profile of the metabolic responses to anoxia in marine invertebrates. In: Cell and Molecular Responses to Stress. Vol. 3. Sensing, Signaling and Cell Adaptation / K. B. Storey, J. M. Storey (Eds). Amsterdam: Elsevier Science B. V., 2002, 346 p.
Lebedeva I. Yu., Leibova V. B., Ernst L. K. Activity of protein and carbohydrate metabolism enzymes in black pied heifer blood in relation to subsequent reproductive intensity. Russian Agricultural Sciences, 2012, vol. 38, iss. 3, pp. 247–250. https://doi.org/10.3103/S1068367412030123
Olson K. R. Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. Journal of Comparative Physiology B, 2012, vol. 182, iss. 7, pp. 881–897. https://doi.org/10.1007/s00360-012-0654-y
Rinke C., Lee R. W. Pathways, activities and thermal stability of anaerobic and aerobic enzymes in thermophilic vent paralvinellid worms. Marine Ecology Progress Series, 2009, vol. 382, pp. 99–112. https://doi.org/10.3354/meps07980
Soldatov A. A., Kukhareva T. A., Andreeva A. Yu., Efremova E. S. Erythroid elements of hemolymph in Anadara kagoshimensis (Tokunaga, 1906) under conditions of the combined action of hypoxia and hydrogen sulfide contamination. Russian Journal of Marine Biology, 2018, vol. 44, iss. 6, pp. 452–456. https://doi.org/10.1134/S1063074018060111
Somero G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 2010, special iss. 213, pp. 912–920. https://doi.org/10.1242/jeb.037473
Washizu T., Nakamura M., Izawa N., Suzuki E., Tsuruno S., Washizu M., Nakajo S., Arai T. The activity ratio of the cytosolic MDH/LDH and the isoenzyme pattern of LDH in the peripheral leukocytes of dogs, cats and rabbits. Veterinary Research Communications, 2002, vol. 26, iss. 5, pp. 341–346.
Zwaan A., Eertman R. H. M. Anoxic or aerial survival of bivalves and other euryoxic invertebrates as a useful response to environmental stress – A comprehensive review. Comparative Biochemistry and Physiology, 1996, vol. 113, iss. 2, pp. 299–312. https://doi.org/10.1016/0742-8413(95)02101-9