Kovalyova I. V. Quantitative relationship between solar radiation intensity and average daily value of photosynthesis light saturation for phytoplankton in the deep-water area of the Black Sea. Marine Biological Journal, 2020, vol. 5, no. 1, pp. 43-49. https://doi.org/10.21072/mbj.2020.05.1.05



According to data obtained during expeditions in the Black Sea (1987–1993), linear relationship between the light flux density incident on the sea surface (E0) and the starting point of photosynthesis light saturation (En opt) is revealed. For calculations, measurements of phytoplankton photosynthesis rate obtained by the radiocarbon method were used. The equation of the relationship between the values reported is presented for the first time for the Black Sea. En opt is the average daily, optimal value of photosynthesis light saturation. The parameters of photosynthesis – light curve, determined in short-period exposures under constant illumination, differ from the parameters obtained in long-term experiments under conditions of variable illumination. This is due to different effects of the intensity and dose on the phytoplankton photosynthesis rate. The values of photosynthetic parameters for a certain time are integrated into a single value which is the optimum for the entire period observed. The approximation of daily data integrated is carried out both separately for seasons and in general for the period of 1987–1993. Using statistical processing of data of average daily values of the intensity of solar radiation incident on the sea surface, slope of the photosynthesis – light curve, and maximum photosynthesis rate, the approximation is determined for the functional dependence of En opt on E0. The equation is applicable in the range of light intensity 3 to 75 mol quanta·m−2·day−1. It describes with high reliability a change of average daily value of photosynthesis light saturation in the Black Sea during different seasons of the year. The equation includes a parameter easily accessible for measurement. It can be used in analysis of physiological characteristics of phytoplankton and calculation of integrated phytoplankton productivity in euphotic layer with using both satellite and expedition data.


I. V. Kovalyova

researcher, PhD




Ведерников В. И. Особенности распределения первичной продукции и хлорофилла в Чёрном море в весенний и летний периоды // Изменчивость экосистемы Чёрного моря: естественные и антропогенные факторы. Москва : Наука, 1991. С. 128–147. [Vedernikov V. I. Osobennosti raspredeleniya pervichnoi produktsii i khlorofilla v Chernom more v vesennii i letnii periody. Izmenchivost’ ekosistemy Chernogo morya: estestvennye i antropogennye faktory. Moscow : Nauka, 1991, pp. 128–147. (in Russ.)]

Демидов А. Б., Шеберстов С. В., Гагарин В. И. Межгодовая изменчивость ледового покрова и первичной продукции Карского моря // Океанология. 2018. Т. 58, № 4. С. 578–592. [Demidov A. B., Sheberstov S. V., Gagarin V. I. Interannual variability of the ice cover and primary production of the Kara Sea. Okeanologiya, 2018, vol. 58, no. 4, pp. 578–592. (in Russ.)]. http://doi.org/10.1134/S0030157418040019

Ковалева И. В. Моделирование сезонной и многолетней изменчивости первичной продукции фитопланктона в Чёрном море : дис. … канд. биол. наук : 03.02.10. Севастополь, 2017. 147 с. [Kovalyova I. V. Modelirovanie sezonnoi i mnogoletnei izmenchivosti pervichnoi produktsii fitoplanktona v Chernom more. [dissertation]. Sevastopol, 2017, 147 p. (in Russ.)]

Ковалёва И. В. Связь первичной продукции с интенсивностью солнечной радиации // Экология моря. 2006. Вып. 72. С. 77–86. [Kovalyova I. V. Relationship of primary production with intensity of sun irradiance. Ekologiya morya, 2006, iss. 72, pp. 77–86. (in Russ.)]

Парсонс Т. Р., Такахаши М., Харгрейв Б. Биологическая океанография : пер. с англ. Москва : Лёгкая и пищевая промышленность, 1982. 432 с. [Parsons T. R., Takahashi M., Hargrave B. Biological Oceanography. Moscow : Legkaya i pishchevaya promyshlennost’, 1982, 432 p. (in Russ.)]

Финенко З. З., Крупаткина Д. К. Первичная продукция в Чёрном море в зимне-весенний период // Океанология. 1993. Т. 33, № 1. С. 97–104. [Finenko Z. Z., Krupatkina D. K. Primary production in the Black Sea in the winter-spring period. Okeanologiya, 1993, vol. 33, no. 1, pp. 97–104. (in Russ.)]

Финенко З. З., Чурилова Т. Я., Сосик Х. М. Вертикальное распределение фотосинтетических характеристик фитопланктона в Чёрном море // Океанология. 2004. Т. 44, № 2. С. 222–237. [Finenko Z. Z., Churilova T. Ya., Sosik H. M. Vertical distribution of phytoplankton photosynthetic characteristics in the Black Sea. Okeanologiya, 2004, vol. 44, no. 2, pp. 222–237. (in Russ.)]

Финенко З. З., Чурилова Т. Я., Сосик Х. М., Бастюрк О. Изменчивость фотосинтетических параметров фитопланктона в поверхностном слое Чёрного моря // Океанология. 2002. Т. 42, № 1. С. 60–75. [Finenko Z. Z., Churilova T. Ya., Sosik H. M., Basturk O. Variability of photosynthetic parameters of the surface phytoplankton in the Black Sea. Okeanologiya, 2002, vol. 42, no. 1, pp. 60–75. (in Russ.)]

Behrenfeld M., Falkowski P. A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 1997, vol. 42, no. 7, pp. 1479–1491. https://doi.org/10.4319/lo.1997.42.7.1479

Blackman F. F. Optimal and limiting factors. Annals of Botany, 1905, vol. 19, pp. 281–293.

Parker R. A. Empirical functions relating metabolic processes in aquatic systems to environmental variables. Journal of the Fisheries Research Board of Canada, 1974, vol. 31, no. 9, pp. 1550–1552. https://doi.org/10.1139/f74-192

Platt T., Sathyendranath S. Estimators of primary production for interpretation of remotely sensed data on ocean color. Journal Geophysical Research, 1993, vol. 98, iss. C8, pp. 14561–14576. https://doi.org/10.1029/93JC01001

Regaudie-de-Gioux A., Huete-Ortega M., Sobrinoc C., Lopez-Sandovald D. C., Gonzaleze N., Fernandez-Carrerac A., Vidalf M., Maranonc E., Cermenog P., Latasah M., Agustid S., Duarted C. M. Multi-model remote sensing assessment of primary production in the subtropical gyres. Journal of Marine Systems, 2019, vol. 196, pp. 97–106. http://doi.org/10.1016/j.jmarsys.2019.03.007

Rodhe W., Vollenweider R. A., Nauwerk A. The primary production and standing crop of phytoplankton. In: Perspectives in Marine Biology / A. A. Buzzati-Travenso (Ed.). Berkeley : University of California Press, 1958, pp. 299–322.

Smith E. M. Photosynthesis in relation to light and carbon dioxide. Proceedings of the National Academy of Sciences, 1936, vol. 22, no. 8, pp. 504–511. http://doi.org/10.1073/pnas.22.8.504

Smith R. C., Baker K. S. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 1978, vol. 23, iss. 2, pp. 247–259. https://doi.org/10.4319/lo.1978.23.2.0247

Talling J. E. The phytoplankton population as a compound photosynthetic system. New Phytologist, 1957, vol. 56, iss. 2, pp. 133–149. https://doi.org/10.1111/j.1469-8137.1957.tb06962.x

Vollenweider R. A. Models for calculating integral photosynthesis and some implications regarding structural properties of the community metabolism of aquatic systems. In: Prediction and Measurement of Photosynthetic Productivity : proceedings of the IBP/PP technical meeting, Třeboň, 14–21 Sept., 1969. Wageningen : Pudoc, 1970, pp. 455–472.


This work was carried out partially within the framework of government research assignment of IBSS RAS “Functional, metabolic, and toxicological aspects of the existence of hydrobionts and their populations in biotopes with different physical and chemical regimes” (No. АААА-А18-118021490093-4) and partially – according to the project of the Presidium of the RAS “Influence of physical and chemical processes on the change of species composition and productivity of marine phytoplankton” (No. АААА-А18-118020790209-9).



Download data is not yet available.