Fatty acid composition in trochophores of mussel Mytilus galloprovincialis grown under contamination with polychlorinated biphenyls
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
Status of Mytilus galloprovincialis populations in the natural habitat is known to directly depend on development of Black Sea mussel at all its stages, including initial stages of larval ontogenesis, which are very sensitive to environmental pollution. Organic pollutants adversely affect mussel larvae by inhibiting their growth and development. Patterns of mussel reproduction are well studied, which makes it possible to obtain larvae from artificially fertilized eggs of this mollusc species in controlled laboratory conditions. In this work, the fatty acid composition of M. galloprovincialis larvae at the trochophore stage on the 3rd day in the control experiment and under artificial contamination with polychlorinated biphenyls (PCBs) in different concentrations is studied for the first time. The fatty acid composition of total lipids in the biomass of larvae obtained on the 3rd day of the experiment was studied by means of gas chromatography – mass spectrometry. Totally, 14 fatty acids were identified in the samples; 59 % of them were saturated fatty acids, 24 % were monounsaturated fatty acids, and 17 % were polyunsaturated fatty acids. Statistical analysis was performed using Statistical Toolbox of MATLAB software (version 8.2). The totals of monounsaturated and polyunsaturated fatty acids significantly differed in lipids of M. galloprovincialis trochophores in the experiment with different PCB concentrations. The totals of saturated fatty acids did not significantly differ. The major saturated fatty acids in all mussel trochophores studied were palmitic (C16:0) and stearic (C18:0) acids. Their concentration did not significantly change under the exposure to PCBs. The main monounsaturated fatty acids were oleic (C18:1ω9), palmitoleic (C16:1ω7), and vaccenic (C18:1ω7) acids. The fraction of monounsaturated fatty acids was twice as low when exposed to the PCB concentrations 0.1 and 1.0 μg·L−1. However, when the PCB concentration was 10 μg·L−1, the total of these acids did not differ from the control. Among polyunsaturated fatty acids having biological essentiality, it was possible to identify arachidonic (C20:4ω6), eicosapentaenoic (C20:5ω3), and docosahexaenoic (C22:6ω3) acids. The total fraction of omega-3 and omega-6 acids in mussel larvae in the control did not exceed 12.8 %. With an increase of the PCB concentration in the growth medium 0.1 to 1.0 μg·L−1, the fraction of polyunsaturated fatty acids increased 2.5-fold. At the PCB concentration 10 μg·L−1 and in the sample with pure acetone added, the total fraction of polyunsaturated fatty acids was comparable with that in the control. The results of the study indicate that fatty acid response is the highest when the medium is exposed to the PCB concentrations ranging 0.1 to 1.0 μg·L−1. At the PCB concentrations equal to 10 μg·L−1 or higher, biochemical processes in larvae seem to slow down. The results of this study will contribute to a better understanding of biochemical rearrangements that allow molluscs at larval developmental stages to adapt to environmental pollution with organic xenobiotics.
Authors
References
Гаврисюк В. К. Применение Омега-3 полиненасыщенных жирных кислот в медицине // Український пульмонологічний журнал. 2001. № 3. С. 5–10. [Gavrisyuk V. K. Primenenie Omega-3 polinenasyshchennykh zhirnykh kislot v meditsine. Ukrainskyi pulmonolohichnyi zhurnal, 2001, no. 3, pp. 5–10. (in Russ.)]
Золотницкий А. П. Современное состояние, проблемы и перспективы развития конхиокультуры в Украине // Рибне господарство України. 2011. № 4. С. 45–48. [Zolotnitskii A. P. Sovremennoe sostoyanie, problemy i perspektivy razvitiya konkhiokul’tury v Ukraine. Rybne hospodarstvo Ukrainy, 2011, no. 4, pp. 45–48. (in Russ.)]
Караванцева Н. В., Поспелова Н. В., Бобко Н. И., Нехорошев М. В. Методика отбора половых продуктов мидии Mytilus galloprovincialis Lam. // Системы контроля окружающей среды. 2012. № 17. С. 184–187. [Karavantseva N. V., Pospelova N. V., Bobko N. I., Nekhoroshev M. V. Technique for collection of mussel Mytilus galloprovincialis Lam. gametes. Sistemy kontrolya okruzhayushchei sredy, 2012, no. 17, pp. 184–187. (in Russ.)]
Кейтс М. Техника липидологии. Москва : Изд-во «Мир», 1975. 324 c. [Kates M. Tekhnika lipidologii. Moscow : Izd-vo “Mir”, 1975, 324 p. (in Russ.)]
Котелевцев С. В., Маторин Д. Н., Садчиков А. П. Экологическая токсикология и биотестирование водных экосистем : учебное пособие. Москва : Изд-во «Инфра-М», 2015. 252 с. [Kotelevtsev S. V., Matorin D. N., Sadchikov A. P. Ekologicheskaya toksikologiya i biotestirovanie vodnykh ekosistem : uchebnoe posobie. Moscow : Izd-vo “Infra-M”, 2015, 252 p. (in Russ.)]
Малахова Л. В., Малахова Т. В., Щурова Е. С., Карамышев А. К. Мониторинг хлорорганического загрязнения Севастопольской акватории с использованием мидий M. galloprovincialis в качестве вида-индикатора // Морские биологические исследования: достижения и перспективы : в 3-х т. : сб. материалов Всерос. науч.-практ. конф. с междунар. участием, приуроч. к 145-летию Севастопольской биологической станции, Севастополь, 19–24 сент. 2016 г. / под общ. ред. А. В. Гаевской. Севастополь : ЭКОСИ-Гидрофизика, 2016. Т. 3. С. 140–143. [Malakhova L. V., Malakhova T. V., Shchurova E. S., Karamyshev A. K. Monitoring khlororganicheskogo zagryazneniya Sevastopol’skoi akvatorii s ispol’zovaniem midii M. galloprovincialis v kachestve vida-indikatora. In: Morskie biologicheskie issledovaniya: dostizheniya i perspektivy : v 3-kh t. : sb. materialov Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem, priuroch. k 145-letiyu Sevastopol’skoi biologicheskoi stantsii, Sevastopol, 19–24 Sept., 2016 / A. V. Gaevskaya (Ed.). Sevastopol : EKOSI-Gidrofizika, 2016, vol. 3, pp. 140–143. (in Russ.)]
Никонова Л. Л., Малахова Л. В., Нехорошев М. В., Рябушко В. И. Хлорорганические соединения в гонадах и половых продуктах двустворчатого моллюска мидии M. galloprovincialis Lam., 1819, культивируемого у берегов Крыма (Черное море) // Вода: химия и экология. 2017. № 3. С. 40–45. [Nikonova L. L., Malakhova L. V., Nekhoroshev M. V., Ryabushko V. I. Organochlorine compounds in gonads and gametes of bivalve mollusk M. galloprovincialis Lam., cultivated near the shores of the Crimea (the Black Sea). Voda: khimiya i ekologiya, 2017, no. 3, pp. 40–45. (in Russ.)]
Пиркова А. В., Ладыгина Л. В., Бобко Н. И. Воздействие загрязняющих веществ в морской воде на развитие личинок мидии M. galloprovincialis Lam. и устрицы Crassostrea gigas // Водные биоресурсы, аквакультура и экология водоемов : материалы Всерос. науч. конф., г. Калининград, 23–24 мая 2017 г. Калининград : ФГБОУ ВО «КГТУ», 2017. С. 135–138. [Pirkova A. V., Ladygina L. V., Bobko N. I. Vozdeistvie zagryaznyayushchikh veshchestv v morskoi vode na razvitie lichinok midii M. galloprovincialis Lam. i ustritsy Crassostrea gigas. In: Vodnye bioresursy, akvakul’tura i ekologiya vodoemov : materialy Vseros. nauch. konf., Kaliningrad, 23–24 May, 2017. Kaliningrad : FGBOU VO “KGTU”, 2017, pp. 135–138. (in Russ.)]
Пиркова А. В., Ладыгина Л. В., Бобко Н. И. Эмбрионы мидии M. galloprovincialis Lam. – индикаторы загрязнения морской воды поверхностно-активными веществами // Загрязнение морской среды: экологический мониторинг, биоиндикация, нормирование : материалы Всерос. науч. конф., г. Севастополь, 28 мая – 01 июня 2018 г. Севастополь : ООО «Колорит», 2018. С. 205–209. [Pirkova A. V., Ladygina L. V., Bobko N. I. Embriony midii M. galloprovincialis Lam. – indikatory zagryazneniya morskoi vody poverkhnostno-aktivnymi veshchestvami. In: Zagryaznenie morskoi sredy: ekologicheskii monitoring, bioindikatsiya, normirovanie : materialy Vseros. nauch. konf., Sevastopol, 28 May – 01 June, 2018. Sevastopol : OOO “Kolorit”, 2018, pp. 205–209. (in Russ.)]
ПНД Ф 14.1:2:3:4.204-04 Методика измерений массовых концентраций хлорорганических пестицидов и полихлорированных бифенилов в пробах питьевых, природных и сточных вод методом газовой хроматографии (издание 2018 г.). Утверждена директором ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» В. Ч. Юранец 31 июля 2018 г. [PND F 14.1:2:3:4.204-04 Metodika izmerenii massovykh kontsentratsii khlororganicheskikh pestitsidov i polikhlorirovannykh bifenilov v probakh pit’evykh, prirodnykh i stochnykh vod metodom gazovoi khromatografii (izdanie 2018 g.). Utverzhdena direktorom FGBU “Federal’nyi tsentr analiza i otsenki tekhnogennogo vozdeistviya” V. Ch. Yuranets 31.07.2018 (in Russ.)]
Поспелова Н. В., Егоров В. Н., Челядина Н. С., Нехорошев М. В. Содержание меди в органах и тканях Mytilus galloprovincialis Lamarck, 1819 и поток её седиментационного депонирования в донные осадки в хозяйствах черноморской аквакультуры // Морской биологический журнал. 2018. Т. 3, № 4. С. 64–75. [Pospelova N. V., Egorov V. N., Chelyadina N. S., Nekhoroshev M. V. The copper content in the organs and tissues of Mytilus galloprovincialis Lamarck, 1819 and the flow of its sedimentary deposition into bottom sediments in the farms of the Black Sea aquaculture. Morskoj biologicheskij zhurnal, 2018, vol. 3, no. 4, pp. 64–75. (in Russ.)]. https://doi.org/10.21072/mbj.2018.03.4.07
Рябушко В. И., Козинцев А. Ф., Тоичкин А. М. Концентрация мышьяка в тканях культивируемой мидии Mytilus galloprovincialis Lam., в воде и донных осадках (Крым, Чёрное море) // Морской биологический журнал. 2017. Т. 2, № 3. С. 68–74. [Ryabushko V. I., Kozintsev A. F., Toichkin A. M. Concentration of arsenic in the tissues of cultivated mussel Mytilus galloprovincialis Lam., water and bottom sediments (Crimea, Black Sea). Morskoj biologicheskij zhurnal, 2017, vol. 2, no. 3, pp. 68–74. (in Russ.)]. https://doi.org/10.21072/mbj.2017.02.3.06
ТС Т. Р. 021/2011. Технический регламент Таможенного союза о безопасности пищевой продукции. Москва : Госстандарт России, 2011. 242 с. [TS T. R. 021/2011. Tekhnicheskii reglament Tamozhennogo soyuza o bezopasnosti pishchevoi produktsii. Moscow : Gosstandart Rossii, 2011, 242 p. (in Russ.)]
Фокина Н. Н., Нефедова З. А., Немова Н. Н. Липидный состав мидий Mytilus edulis L. Белого моря. Влияние некоторых факторов среды обитания. Петрозаводск : Изд-во КарНЦ РАН, 2010. 243 с. [Fokina N. N., Nefedova Z. A., Nemova N. N. Lipidnyi sostav midii Mytilus edulis L. Belogo morya. Vliyanie nekotorykh faktorov sredy obitaniya. Petrozavodsk : Izd-vo KarNTs RAN, 2010, 243 p. (in Russ.)]. http://doi.org/10.13140/2.1.2154.8322
Хасанов В. В., Рыжова Г. Л., Дычко К. А., Куряева Т. Т. Состав жирных кислот и стероидов растительных масел // Химия растительного сырья. 2006. № 3. С. 27–31. [Khasanov V. V., Ryzhova G. L., Dychko K. A., Kuryaeva T. T. Sostav zhirnykh kislot i steroidov rastitel’nykh masel. Khimiya rastitel’nogo syr’ya, 2006, no. 3, pp. 27–31. (in Russ.)]
Холодов В. И., Пиркова А. В., Ладыгина Л. В. Выращивание мидий и устриц в Черном море. Воронеж : Изд-во ООО «Издат-Принт», 2017. 508 с. [Kholodov V. I., Pirkova A. V., Ladygina L. V. Cultivation of Mussels and Oysters in the Black Sea. Voronezh : Izd-vo OOO “Izdat-Print”, 2017, 508 р. (in Russ.)]. https://repository.marine-research.ru/handle/299011/5523
Чеботарева М. А., Забелинский С. А., Шуколюкова Е. П., Кривченко А. И. Предел изменения индекса ненасыщенности жирнокислотного состава фосфолипидов при адаптациях моллюсков к биогенным и абиогенным факторам внешней среды // Журнал эволюционной биохимии и физиологии. 2011. Т. 47, № 5. С. 383–387. [Chebotareva M. A., Zabelinskii S. A., Shukolyukova E. P., Krivchenko A. I. Limit of change in unsaturation index of fatty acid composition of phospholipids at adaptation of molluscs to biogenic and abiogenic environmental factors. Journal of Evolutionary Biochemistry and Physiology, 2011, vol. 47, no. 5, pp. 448–453. (in Russ.)]. https://doi.org/10.1134/S0022093011050069
Cronan J. E., Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods in Enzymology, 2009, vol. 459, pp. 395–433. https://doi.org/10.1016/S0076-6879(09)04617-5
Egorov V. N., Lazorenko G. E., Mirzoeva N. Yu., Stokozov N. A., Kostova S. K., Malakhova L. V., Pirkova A. V., Arkhipova S. I., Korkishko N. F., Popovichev V. N., Plotitsyna O. V., Migal L. V. Content of 137Cs, 40K, 90Sr, radionuclides, and some chemical pollutants in the Black Sea mussels M. galloprovincialis Lam. Morskoj ekologicheskij zhurnal, 2006, vol. 5, no. 3, pp. 70–78.
Ekin I., Başhan M. Fatty acid composition of selected tissues of Unio elongatulus (Bourguignat, 1860) (Mollusca: Bivalvia) collected from Tigris River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 2010, vol. 1, no. 4, pp. 445–451. https://doi.org/10.4194/trjfas.2010.0402
Ekin I., Şeşen R. Investigation of the fatty acid contents of edible snails Helix lucorum, Eobania vermiculata and non-edible slug Limax flavus. Records of Natural Products, 2017, vol. 11, no. 6, pp. 562–567. https://doi.org/10.25135/acg.rnp.72.17.02.043
Fokina N. N., Ruokolainen T. R., Nemova N. N. Lipid composition modifications in the blue mussels (Mytilus edulis L.) from the White Sea. In: Organismal and Molecular Malacology / R. Bettencourt et al. (Eds). Intech, 2017, chap. 7, pp. 143–159. https://doi.org/10.5772/67811
Klimova T. N., Vdodovich I. V., Zagorodnyaya Yu. A., Ignatyev S. M., Malakhova L. V., Dotsenko V. S. Ichthyoplankton in the plankton community of the Crimean Peninsula shelf zone (Black Sea) in July 2010. Journal of Ichthyology, 2014, vol. 54, no. 6, pp. 409–421. https://doi.org/10.1134/S0032945214030060
Leonardos N., Lucas I. The use of larval fatty acids as an index of growth in Mytilus edulis L. larvae. Aquaculture, 2000, vol. 184, pp. 155–166. https://doi.org/10.1016/S0044-8486(99)00320-8
Leroy F., Meziane T., Riera P., Comtet T. Seasonal variations in maternal provisioning of Crepidula fornicata (Gastropoda): Fatty acid composition of females, embryos and larvae. PLoS One, 2013, no. 8, pp. 1–9. https://doi.org/10.1371/journal.pone.0075316
Nagy K., Tiuca I.-D. Importance of fatty acids in physiopathology of human body. In: Fatty Acids / A. Catala (Ed.). Intech, 2017, chap. 1, pp. 1–22. https://doi.org/10.5772/67407
Nelson M. M., Leighton D. L., Phleger C. F., Nichols P. D. Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, vol. 131, no. 73, pp. 695–712. https://doi.org/10.1016/S1096-4959(02)00042-8
Peters J. Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Marine Ecology Progress Series, 2007, vol. 341, pp. 153–163. https://doi.org/10.3354/meps341153
Pettersen A. K., Turchini G. M., Jahangard S., Ingram B. A., Sherman C. D. Effects of different dietary microalgae on survival, growth, settlement, and fatty acid composition of blue mussel (M. galloprovincialis) larvae. Aquaculture, 2010, vol. 309, pp. 115–124. https://doi.org/10.1016/j.aquaculture.2010.09.024
Saito H. Lipid and FA composition of the pearl Oyster pinctada. Lipids, 2004, vol. 39, no. 10, pp. 997–1005. https://doi.org/10.1007/s11745-004-1322-3
Weis J. S. Delayed behavioral effects of early life toxicant exposures in aquatic biota. Toxics, 2014, vol. 2, no. 2, pp. 165–187. https://doi.org/10.3390/toxics2020165