Spectral bio-optical properties of water of Atlantic sector of Antarctic
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
Studies of variability of spectral bio-optical properties of water of Atlantic sector of Antarctic were carried out during the 79th cruise of the RV “Akademik Mstislav Keldysh” (11.01.2020–04.02.2020). Chlorophyll a and phaeopigment concentration varied in the layer studied from 0.1 to 1.8 mg·m−3, except for two stations with content reaching 2.2 and 4.4 mg·m−3. The relationship was revealed between light absorption coefficient by phytoplankton and chlorophyll a concentration at a wavelength, corresponding to spectrum maxima: aph(438) = 0.044 × Ca1.2, r2 = 0.84 (n = 117); aph(678) = 0.021 × Ca1.1, r2 = 0.89 (n = 117). Spectral distribution of light absorption coefficient by non-algal particles and colored dissolved organic matter was described by exponential function. Absorption parameterization coefficients were retrieved: (1) light absorption coefficient by non-algal particles (0.001–0.027 m−1) and by colored dissolved organic matter (0.016–0.19 m−1) at a wavelength of 438 nm; (2) spectral slope coefficients of these components (0.005–0.016 and 0.009–0.022 nm−1, respectively).
Authors
References
Чурилова Т. Я., Финенко З. З., Акимов А. И. Пигменты микроводорослей // Микроводоросли Чёрного моря: проблемы сохранения биоразнообразия и биотехнологического использования / под ред. Ю. Н. Токарева, З. З. Финенко, Н. В. Шадрина. Севастополь : ЭКОСИ-Гидрофизика, 2008. Гл. 11. С. 301–320. [Churilova T. Ya., Finenko Z. Z., Akimov A. I. Pigments of microalgae. In: The Black Sea Microalgae: Problems of Biodiversity Preservation and Biotechnological Usage / Eds: Yu. N. Tokarev, Z. Z. Finenko, N. V. Shadrin. Sevastopol : EKOSI-Gidrofizika, 2008, chap. 11, pp. 301–320. (in Russ.)]
Bricaud A., Babin M., Morel A., Claustre H. Variability in the chlorophyll specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research: Oceans, 1995, vol. 100, iss. C7, pp. 13321–13332. https://doi.org/10.1029/95JC00463
Churilova T., Moiseeva N., Efimova T., Suslin V., Krivenko O., Zemlianskaia E. Annual variability in light absorption by particles and colored dissolved organic matter in the Crimean coastal waters (the Black Sea). Proceedings of SPIE : 23th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2017, vol. 10466, art. no. 104664B (14 p.). https://doi.org/10.1117/12.2288339
Ciotti Á. M., Lewis M. R., Cullen J. J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography, 2002, vol. 4, iss. 2, pp. 404–417. https://doi.org/10.4319/lo.2002.47.2.0404
Dierssen H. M., Smith R. C. Bio‐optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. Journal of Geophysical Research: Oceans, 2000, vol. 105, iss. C11, pp. 26301–26312. https://doi.org/10.1029/1999JC000296
Ferreira A., Ciotti Á. M., Garcia C. A. E. Bio-optical characterization of the northern Antarctic Peninsula waters: Absorption budget and insights on particulate backscattering. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, vol. 149, pp. 138–149. https://doi.org/10.1016/j.dsr2.2017.09.007
Ferreira A., Ciotti Á. M., Mendes C. R. B., Uitz J., Bricaud A. Phytoplankton light absorption and the package effect in relation to photosynthetic and photoprotective pigments in the northern tip of Antarctic Peninsula. Journal of Geophysical Research: Oceans, 2017, vol. 122, iss. 9, pp. 7344–7363. https://doi.org/10.1002/2017JC012964
Figueiras F. G., Arbones B., Estrada M. Implications of bio-optical modeling of phytoplankton photosynthesis in Antarctic waters: Further evidence of no light limitation in the Bransfield Strait. Limnology and Oceanography, 1999, vol. 44, iss. 7, pp. 1599–1608. https://doi.org/10.4319/lo.1999.44.7.1599
Figueroa F. L. Bio-optical characteristics of Gerlache and Bransfield Strait waters during an Antarctic summer cruise. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, vol. 49, pp. 675–691.
IOCCG. Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation. Vol. 4.0. Inherent Optical Property Measurements and Protocols: Best Practices for the Collection and Processing of Ship-based Underway Flow-through Optical Data / Eds: A. R. Neeley, A. Mannino. Dartmouth, NS, Canada : International Ocean-Colour Coordinating Group (IOCCG), 2019, 22 p. (IOCCG Protocol Series ; vol. 4.0). http://dx.doi.org/10.25607/OBP-664
IOCCG. Uncertainties in Ocean Colour Remote Sensing / Ed.: Mélin F. Dartmouth, NS, Canada : International Ocean-Colour Coordinating Group (IOCCG), 2019, 164 p. (Reports of the International Ocean-Colour Coordinating Group ; no. 18). http://dx.doi.org/10.25607/OBP-696
Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 1975, vol. 167, iss. 2, pp. 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3
Kirk J. T. O. Light and Photosynthesis in Aquatic Ecosystems. Cambridge : University Press, 2011, 649 p.
Kishino M., Takahashi N., Okami N., Ichimura S. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science, 1985, vol. 37, no. 2, pp. 634–642.
Lorenzen C. J. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnology and Oceanography, 1967, vol. 12, iss. 2, pp. 343–346. https://doi.org/10.4319/lo.1967.12.2.0343
Mitchell B. G. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. Proceedings of SPIE: Ocean Optics X, 1990, vol. 1302, pp. 137–148. https://doi.org/10.1117/12.21440
Mitchell B. G., Holm-Hansen O. Bio-optical properties of Antarctic Peninsula waters: Differentiation from temperate ocean model. Deep Sea Research Part A. Oceanographic Research Papers, 1991, vol. 38, iss. 8–9, pp. 1009–1028. https://doi.org/10.1016/0198-0149(91)90094-V
Morel A., Bricaud A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Research Part A. Oceanographic Research Papers, 1981, vol. 28, iss. 11, pp. 1375–1393. https://doi.org/10.1016/0198-0149(81)90039-X
Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods / Eds: S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright. Paris : UNESCO Publishing, 1997, 661 p. (Monographs on Oceanographic Methodology ; no. 10).
Reynolds R. A., Stramski D., Mitchell B. G. A chlorophyll‐dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean. Journal of Geophysical Research: Oceans, 2001, vol. 106, iss. C4, pp. 7125–7138. https://doi.org/10.1029/1999JC000311
Ting C. S., Rocap G., King J., Chisholm S. W. Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies. Trends in Microbiology, 2002, vol. 10, iss. 3, pp. 134–142. https://doi.org/10.1016/S0966-842X(02)02319-3