Working collection of carotenogenic microalgae living cultures of A. O. Kovalevsky Institute of Biology of the Southern Seas
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
The article contains information on the specialized working collection of carotenogenic microalgae maintained by the staff of the animal physiology and biochemistry department of A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS (IBSS). The collection was established within the framework of IBSS scientific and applied research to study the mechanisms of stress tolerance in eurybiontic and extremophilic single-celled phototrophs and to identify commercially significant sources of highly valuable ketocarotenoids of astaxanthin group used for medicine and food production. The collection contains 44 microalgal strains of various taxonomic and ecological specialization with a pronounced ability to hypersynthesize secondary carotenoids and lipids under extreme conditions (drying, nutrient starvation, high-intensity illumination, extreme temperature and salinity, effect of toxicants, etc.). The main ways to replenish the fund are direct exchange of carotenogenic species with leading Russian and foreign collections of microalgae and own field sampling in the Black Sea areas of Crimea and Caucasus. The majority of strains in the collection represent two orders of the class Chlorophyceae: Chlamydomonadales (25 strains) and Sphaeropleales (15 strains), since the phenomenon of secondary carotenogenesis is widespread in these orders. Out of them, inhabitants of ephemeral freshwater ponds predominate, as well as aerophilic and soil microalgae. All strains are maintained under controlled conditions on agarized mineral media as pure cultures. Description of the collection accession includes the following data: a) current taxonomic status of the species verified according to updated information from corresponding collections and algological databases, namely AlgaeBase and NCBI Taxonomy Browser; b) species basionym and known synonyms; c) date and source of the strain deposition; d) author’s surname, geographic location, and biotope, from which the strain was isolated; e) accession number of sequences associated with the strain in NCBI (if any); and f) nutrient medium, on which the strain is maintained in the IBSS collection. The significance of the collection for morphological, biological, physiological, and biochemical studies of growth, secondary carotenogenesis, and biotechnological potential in green microalgae is discussed.
Authors
References
Андреева В. М. Почвенные и аэрофильные зелёные водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Санкт-Петербург : Наука, 1998. 351 с. [Andreeva V. M. Pochvennye i aerofil’nye zelenye vodorosli (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Saint Petersburg : Nauka, 1998, 351 p. (in Russ.)]
Анисимова О. В., Гололобова М. А. Краткий определитель родов водорослей. Учебное пособие. Москва : МГУ, 2006. 159 с. [Anisimova O. V., Gololobova M. A. Kratkii opredelitel’ rodov vodoroslei. Uchebnoe posobie. Moscow : MGU, 2006, 159 p. (in Russ.)]
Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей : учебное пособие. Уфа : Изд-во БГПУ, 2008. 152 с. [Gaisina L. A., Fazlutdinova A. I., Kabirov R. R. Sovremennye metody vydeleniya i kul’tivirovaniya vodoroslei : uchebnoe posobie. Ufa : Izd-vo BGPU, 2008, 152 p. (in Russ.)]
Данцюк Н. В., Челебиева Э. С., Чеканов К. А. Новые изоляты зелёной микроводоросли Нaematococcus pluvialis Flotow (Chlorophyceae) из различных районов Причерноморья // Водоросли и цианобактерии в природных и сельскохозяйственных экосистемах : материалы II Междунар. науч.-практ. конф., посвящ. 105-летию со дня рожд. проф. Эмилии Андриановны Штиной, 19–23 окт. 2015 г. Киров, 2015. С. 98–102. [Dantsyuk N. V., Chelebieva E. S., Chekanov K. A. Novye izolyaty zelenoi mikrovodorosli Haematococcus pluvialis Flotow (Chlorophyceae) iz razlichnykh raionov Prichernomor’ya. Vodorosli i tsianobakterii v prirodnykh i sel’skokhozyaistvennykh ekosistemakh : materialy II Mezhdunar. nauch.-prakt. konf., posvyashch. 150-letiyu so dnya rozhd. prof. Emilii Andrianovny Shtinoi, 19–23 Oct., 2015. Kirov, 2015, pp. 98–102. (in Russ.)]
Дедусенко-Щеголева Н. Т., Матвиенко А. М., Шкорбатов Л. А. Определитель пресноводных водорослей СССР. Вып. 8. Зелёные водоросли. Класс вольвоксовые. Ленинград : Изд-во АН СССР, 1959. 230 с. [Dedusenko-Shchegoleva N. T., Matvienko A. M., Shkorbatov L. A. Opredelitel’ presnovodnykh vodoroslei SSSR. Iss. 8. Zelenye vodorosli. Klass vol’voksovye. Leningrad : Izd-vo AN SSSR, 1959, 230 p. (in Russ.)]
Микроорганизмы и грибы // Депозитарий живых систем «Ноев ковчег» : [сайт]. [Mikroorganizmy i griby. Depozitarii zhivykh sistem “Noev kovcheg” : [site]. (in Russ.)]. URL: http://depository.msu.ru/category-project/mikroorganizmy-i-griby#fung_infosys [accessed: 14.10.2020].
Костіков І. Ю., Демченко Е. М., Березовська М. А. Колекція культур водоростей Київського національного університету імені Тараса Григоровича Шевченка. Каталог штамів (2008 р.) // Чорноморський ботанічний журнал. 2009. Т. 5, № 1. С. 37–79. [Kostikov I. Yu., Demchenko E. M., Berezovska M. A. Kolektsiia kultur vodorostei Kyivskoho natsionalnoho universytetu imeni Tarasa Hryhorovycha Shevchenka. Kataloh shtamiv (2008 r.). Chornomorskyi botanichnyi zhurnal, 2009, vol. 5, no. 1, pp. 37–79. (in Ukr.)]
Минюк Г. С. Каротиногенные микроводоросли. База данных. А. с. № 2020621092. Заявка № 2020620921. 10.06.2020, опубл. 30.06.2020. Бюл. № 7. [Minyuk G. S. Karotinogennye mikrovodorosli. Baza dannykh. A. s. No. 2020621092. Zayavka No. 2020620921. 10.06.2020, . 30.06.2020. Bull. no. 7. (in Russ.)]
Минюк Г. С., Челебиева Э. С., Чубчикова И. Н., Данцюк Н. В., Дробецкая И. В., Сахонь Е. Г., Чивкунова О. Б., Чеканов К. А., Лобакова Е. С., Сидоров Р. А., Соловченко А. Е. Влияние pH и CO2 на рост и метаболизм микроводоросли Coelastrella (Scotiellopsis) rubescens // Физиология растений. 2016. Т. 63, вып. 4. С. 601–610. [Minyuk G. S., Chelebieva E. S., Chubchikova I. N., Dantsyuk N. V., Drobetskaya I. V., Sakhon E. G., Chivkunova O. B., Chekanov K. A., Lobakova E. S., Sidorov R. A., Solovchenko A. E. pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism. Fiziologiya rastenii, 2016, vol. 63, iss. 4, pp. 601–610. (in Russ.)]. http://doi.org/10.7868/S0015330316040102
Патент 2541455 Российская Федерация. МПК6 C12N 1/12. Способ культивирования одноклеточной зелёной водоросли Haematococcus pluvialis / Минюк Г. С., Терентьева Н. В., Дробецкая И. В., Чубчикова И. Н. ; ФГБУН «Институт морских биологических исследований имени А. О. Ковалевского РАН». № ГР 2014149886/93; заявл. 03.10.2014; приор. 12.05.2008; опубл. 10.02.2015. Бюл. № 4. [Patent 2541455 Rossiiskaya Federatsiya. MPK6 C12N 1/12. Sposob kul’tivirovaniya odnokletochnoi zelenoi vodorosli Haematococcus pluvialis / Minyuk G. S., Terent’eva N. V., Drobetskaya I. V., Chubchikova I. N. ; FGBUN “Institut morskikh biologicheskikh issledovanii imeni A. O. Kovalevskogo RAN”. No. GR 2014149886/93; zayavl. 03.10.2014; prior. 12.05.2008; opubl. 10.02.2015. Bull. no. 4. (in Russ.)]
Патент 2661086 Российская Федерация. ПК C12N 1/12; C12P 23/00; C12R 1/89. Способ культивирования микроводоросли Coelastrella rubescens для получения каротиноидов и липидов / Минюк Г. С., Чубчикова И. Н., Дробецкая И. В., Данцюк Н. В., Челебиева Э. С. ; ФГБУН «Институт морских биологических исследований имени А. О. Ковалевского РАН». № ГР 2017110990; заявл. 31.03.2017; опубл. 11.07.2018. Бюл. № 20. [Patent 2661086 Rossiiskaya Federatsiya. PK C12N 1/12; C12P 23/00; C12R 1/89. Sposob kul’tivirovaniya mikrovodorosli Coelastrella rubescens dlya polucheniya karotinoidov i lipidov / Minyuk G. S., Chubchikova I. N., Drobetskaya I. V., Dantsyuk N. V., Chelebieva E. S. ; FGBUN “Institut morskikh biologicheskikh issledovanii imeni A. O. Kovalevskogo RAN”. No. GR 2017110990; zayavl. 31.03.2017; opubl. 11.07.2018. Bull. no. 20. (in Russ.)]
Патент 2715039 Российская Федерация. MPK C12N 1/12; C12P 23/00; C12R 1/89. Способ культивирования микроводоросли Chromochloris zofingiensis для получения липидов и каротиноидов / Минюк Г. С., Чубчикова И. Н., Данцюк Н. В., Дробецкая И. В., Челебиева Э. С., Сидоров Р. А., Соловченко А. Е. ; ФИЦ Институт биологии южных морей имени А. О. Ковалевского. № ГР 2715039; заявл. 01.07.2019; опубл. 21.02.2020. Бюл. № 6. [Patent 2715039 Rossiiskaya Federatsiya MPK C12N 1/12; C12P 23/00; C12R 1/89. Sposob kul’tivirovaniya mikrovodorosli Chromochloris zofingiensis dlya polucheniya lipidov i karotinoidov / Minyuk G. S., Chubchikova I. N., Dantsyuk N. V., Drobetskaya I. V., Chelebieva E. S., Sidorov R. A., Solovchenko A. E. ; FITs Institut biologii yuzhnykh morei imeni A. O. Kovalevskogo. No. GR 2715039; zayavl. 01.07.2019; opubl. 21.02.2020. Bull. no. 6. (in Russ.)]
Темралеева А. Д., Минчева Е. В., Букин Ю. С., Андреева А. М. Современные методы выделения, культивирования и идентификации зелёных водорослей (Chlorophyta). Кострома : Костромской печатный дом, 2014. 215 с. [Temraleeva A. D., Mincheva E. V., Bukin Yu. S., Andreeva A. M. Sovremennye metody vydeleniya, kul’tivirovaniya i identifikatsii zelenykh vodoroslei (Chlorophyta). Kostroma : Kostromskoi pechatnyi dom, 2014, 215 p. (in Russ.)]
Челебиева Э. С., Минюк Г. С., Дробецкая И. В., Чубчикова И. Н. Физиолого-биохимические характеристики Ettlia carotinosa Komárek, 1989 (Chlorophyceae) в условиях экспериментального стресса // Морской экологический журнал. 2013. Т. 12, № 2. С. 78–87. [Chelebieva E. S., Minyuk G. S., Drobetskaya I. V., Chubchikova I. N. Dynamics of chemical composition of Ettlia carotinosa Komárek, 1989 (Chlorophyceae) under experimental induction of secondary carotenogenesis. Morskoj ekologicheskij zhurnal, 2013, vol. 12, no. 2. pp. 78–87. (in Russ.)]
Челебієва Е. С., Скребовська С. В. Місце в системі Chlorophyta одноклітинної автоспороутворюючої водорості Pseudospongiococcum protococcoides // Вісник Львівського університету. Серія біологічна. 2013. Вип. 62. С. 75–81. [Chelebiieva E. S., Skrebovska S. V. Unicellular spore-forming alga Pseudospongiococcum protococcoides position detection in the system Chlorophyta. Visnyk Lvivskoho universytetu. Seriia biolohichna, 2013, iss. 62, pp. 75–81. (in Ukr.)]
Чубчикова И. Н., Дробецкая И. В., Минюк Г. С., Данцюк Н. В., Челебиева Э. С. Скрининг одноклеточных зелёных водорослей как потенциальных источников природных кетокаротиноидов. 2. Особенности роста и вторичного каротиногенеза у представителей рода Bracteacoccus (Chlorophyсeae) // Морской экологический журнал. 2011. Т. 10, № 1. С. 91–97. [Chubchikova I. N., Drobetskaya I. V., Minyuk G. S., Dantsyuk N. V., Chelebiyeva E. S. Screening of green microalgae as a potential source of natural ketocarotenoids. 2. Features of growth and secondary carotenogenesis in the representatives of the genus Bracteacoccus (Chlorophyceae). Morskoj ekologicheskij zhurnal, 2011, vol. 10, no. 1, pp. 91–97. (in Russ.)]
AlgaeBase. World-wide electronic publication, National University of Ireland, Galway : [site]. URL: https://www.algaebase.org/search/species/detail/?species_id=27671 [accessed: 30.01.2021].
Ben-Amotz A., Avron M. The biotechnology of cultivating of the halotolerant alga Dunaliella. Trends in Biotechnology, 1990, vol. 8, pp. 121–126. https://doi.org/10.1016/0167-7799(90)90152-N
Ben-Amotz A., Katz A., Avron M. Accumulation of β-carotene in halotolerant algae: Purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 1982, vol. 18, iss. 4, pp. 529–537. https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
Bischoff H. W., Bold H. C. Phycological Studies. IV. Some Soil Algae From Enchanted Rock and Related Algal Species. Austin, TX : University of Texas, 1963, vol. 6318, 95 p.
Brand J. J., Andersen R. A., Nobles D. R. Jr. Maintenance of microalgae in culture collections. In: Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. / A. Richmond, Q. Hu (Eds). Chichester, UK : John Wiley and Sons, 2013, pp. 80–89. https://doi.org/10.1002/9781118567166.ch5
Capelli B., Talbott S., Ding L. Astaxanthin sources: Suitability for human health and nutrition. Functional Foods in Health and Disease, 2019, vol. 9, no. 6, pp. 430–445. https://doi.org/10.31989/ffhd.v9i6.584
Chelebieva E. S., Dantsyuk N. V., Chekanov K. A., Chubchikova I. N., Drobetskaya I. V., Minyuk G. S., Lobakova E. S., Solovchenko A. E. Identification and morphological-physiological characterization of astaxanthin producer strains of Haematococcus pluvialis from the Black Sea region. Applied Biochemistry and Microbiology, 2018, vol. 54, no. 6, pp. 639–648. https://doi.org/10.1134/S0003683818060078
Fábregas J., Domínguez A., Regueiro M., Maseda A., Otero A. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Applied Microbiology and Biotechnology, 2000, vol. 53, pp. 530–535. https://doi.org/10.1007/s002530051652
Fučíková K., Lewis L. A. Intersection of Chlorella, Muriella and Bracteacoccus: Resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea, 2012, vol. 12, iss. 1, pp. 83–93. https://doi.org/10.5507/fot.2012.007
Han D., Li Y., Hu Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae, 2013, vol. 28, iss. 2, pp. 131–147. https://doi.org/10.4490/algae.2013.28.2.131
Kawasaki Y., Nakada T., Tomita M. Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. Journal of Phycology, 2015, vol. 51, iss. 5, pp. 1000–1016. https://doi.org/10.1111/jpy.12343
Komárek R. Polynuclearity of vegetative cells in coccal green algae from the family Neochloridaceae. Archiv für Protistenkunde, 1989, vol. 137, iss. 3, pp. 255–273. https://doi.org/10.1016/S0003-9365(89)80033-8
Lemoine Y., Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynthesis Research, 2010, vol. 106, iss. 1–2, pp. 155–177. https://doi.org/10.1007/s11120-010-9583-3
Li J., Zhu D., Niu J., Shen S., Wang G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 2011, vol. 29, iss. 6, pp. 568–574. https://doi.org/10.1016/j.biotechadv.2011.04.001
Lourenço S. Microalgae culture collections, strain maintenance, and propagation. In: Handbook of Microalgae-based Processes and Product / E. Jacob-Lopez, M. J. Queroz, M. M. Maroneze, L. Q. Zepka (Eds). Cambridge, MA : Academic Press, 2020, pp. 49–84. https://doi.org/10.1016/b978-0-12-818536-0.00003-8
Minyuk G. S., Chelebieva E. S., Chubchikova I. N. Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chodat) Petrova (Chlorophyta) in a two-stage culture. International Journal on Algae, 2014, vol. 16, iss. 4, pp. 354–368. http://dx.doi.org/10.1615/InterJAlgae.v16.i4.50
Minyuk G., Chelebieva E., Chubchikova I., Dantsyuk N., Drobetskaya I., Sakhon E., Chekanov K., Solovchenko A. Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae, 2017, vol. 32, iss. 3, pp. 245–259. https://doi.org/10.4490/algae.2017.32.8.6
Minyuk G., Sidorov R., Solovchenko A. Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis. Journal of Applied Phycology, 2020, vol. 32, iss. 2, pp. 923–935. https://doi.org/10.1007/s10811-020-02060-0
Nakada T., Ota S. What is the correct name for the type of Haematococcus Flot. (Volvocales, Chlorophyceae)? Taxon, 2016, vol. 65, iss. 2, pp. 343–348. https://doi.org/10.12705/652.11
Pröschold T., Darienko T., Krienitz L., Coleman A. W. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa, 2018, vol. 362, iss. 1, pp. 021–038. https://doi.org/10.11646/phytotaxa.362.1.2
Shah M. R., Liang Y., Cheng J. J., Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 2016, vol. 7, art. 531 (28 p.). https://doi.org/10.3389/fpls.2016.00531
Solovchenko A. E. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynthesis Research, 2015, vol. 125, pp. 437–449. https://doi.org/10.1007/s11120-015-0156-3
World Data Centre for Microorganisms. Culture Collections Information Worldwide : [site]. URL: http://ccinfo.wdcm.org/ [accessed: 30.01.2021].
Wynne M. J., Hallan J. K. Reinstatement of Tetradesmus G. M. Smith (Sphaeropleales, Chlorophyta). Feddes Repertorium, 2015, vol. 126, iss. 3–4, pp. 83–86. https://doi.org/10.1002/fedr.201500021
Zhang C., Chen X., Too H. Microbial astaxanthin biosynthesis: Recent achievements, challenges, and commercialization outlook. Applied Microbiology and Biotechnology, 2020, vol. 104, pp. 5725–5737. https://doi.org/10.1007/s00253-020-10648-2