Steroid hormones, selenium, and zinc in the gonads – gametes – larvae biological system of the mussel Mytilus galloprovincialis Lam.
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
Assessment of the interaction of marine farms with the environment in the industrial cultivation of the mussel Mytilus galloprovincialis is very important. In the mussel farm – environment system, biotic fluxes of chemical compounds through gonads, gametes (sperm and eggs), and larvae make a considerable contribution to this interaction. Since gonads play a key role in the mussel reproduction, it is interesting to study the budget of materials, that are directly involved in this process. Out of these materials, testosterone, estradiol, fatty acids, and some trace minerals, such as Se and Zn, are known to affect spawning, growth, and development. The molluscs absorb these materials from food and water. These materials are partly metabolically assimilated by mussels and partly excreted into the environment with gametes. The aim of this study was to estimate the components of the budget of steroid hormones, fatty acids, and two essential trace elements (Zn and Se) in mussel gonads, gametes, and larvae. The total testosterone and estradiol in gonads and gametes were quantified by enzyme-linked immunosorbent assay. The contents of the trace elements were found using inductively coupled plasma mass spectrometry. The fatty acid composition was determined by means of gas chromatography–mass spectrometry. The contents of Se and Zn in mussel gonads and gametes were found to depend on the stage of the reproductive cycle. In female gonads, Se and Zn concentrations were higher than in male ones. The highest concentration of Se was recorded in eggs: (14.7 ± 2.9) μg·g−1 dry weight (d. w.). In sperm, it was (14.4 ± 1.8) μg·g−1 d. w. Zn content in gonads before spawning was higher than in gametes. In male gonads and in sperm, its values were (27.5 ± 3.7) and (19.3 ± 6.4) μg·g−1 d. w., respectively. In female gonads and eggs, the contents of zinc were (53.6 ± 10.9) and (49.3 ± 8.2) μg·g−1 d. w., respectively. In spring, the mean values of Se and Zn assimilation degree (q) in gonads of the mussel were within 0.1–0.6. The limit values of the alimentary accumulation coefficient (Klim) of Se and Zn ranged 0.6 to 1.4. While spawning, mussels excrete polyunsaturated fatty acids (PUFA), which are probably used by other marine organisms. Up to 56.2 % of PUFA are excreted with sperm, and 48.1 %, with eggs, whereas in larvae this fraction does not exceed 10.2 %. The data obtained indicate that the molluscs assimilate sex hormones, fatty acids, selenium, and zinc to maintain vital processes: prostaglandins are synthesized from PUFA in the body, and testosterone esters are formed from testosterone. Se and Zn, when coupled with proteins, play a key role in the reproduction and formation of larval shells.
Authors
References
Капранова Л. Л. Экскреция тестостерона и эстрадиола культивируемой мидией Mytilus galloprovincialis Lam. (Чёрное море) // Труды Карадагской научной станции им. Т. И. Вяземского — природного заповедника РАН. 2020. Вып. 2 (14). С. 56–66. [Kapranova L. L. Testosterone and estradiol excretion by cultivated mussels Mytilus galloprovincialis Lam. (Black Sea). Trudy Karadagskoi nauchnoi stantsii im. T. I. Vyazemskogo – prirodnogo zapovednika RAN, 2020, iss. 2 (14), pp. 56–66. (in Russ.)]. https://doi.org/10.21072/eco.2021.14.06
Капранова Л. Л., Малахова Л. В., Нехорошев М. В., Лобко В. В., Рябушко В. И. Состав жирных кислот в трохофорах мидий Mytilus galloprovincialis, выращенных в условиях загрязнённости полихлорбифенилами // Морской биологический журнал. 2020. Т. 5, № 2. С. 38–49. [Kapranova L. L., Malakhova L. V., Nekhoroshev M. V., Lobko V. V., Ryabushko V. I. Fatty acid composition in trochophores of mussel Mytilus galloprovincialis grown under contamination with polychlorinated biphenyls. Morskoj biologicheskij zhurnal, 2020, vol. 5, no. 2, pp. 38–49. (in Russ.)]. https://doi.org/10.21072/mbj.2020.05.2.04
Караванцева Н. В., Поспелова Н. В., Бобко Н. И., Нехорошев М. В. Методика отбора половых продуктов мидии Mytilus galloprovincialis Lam. // Системы контроля окружающей среды. 2012. № 17. С. 184–187. [Karavantseva N. V., Pospelova N. V., Bobko N. I., Nekhoroshev M. V. Technique for collection of mussel Mytilus galloprovincialis Lam. gametes. Sistemy kontrolya okruzhayushchei sredy, 2012, no. 17, pp. 184–187. (in Russ.)]
Пиркова А. В., Ладыгина Л. В., Щуров С. В. Формирование поселений мидий Mytilus galloprovincialis (Lamarck, 1819) на коллекторах фермы в бухте Ласпи в зависимости от экологических факторов // Учёные записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. 2019. Т. 5 (71), № 1. С. 92–106. [Pirkova A. V., Ladygina L. V., Shchurov S. V. Formation of settlements of mussel Mytilus galloprovincialis (Lamarck, 1819) on collectors of the Laspi Bay farm depending on environmental factors. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Biologiya. Khimiya, 2019, vol. 5 (71), no. 1, pp. 92–106. (in Russ.)]
Поликарпов Г. Г., Егоров В. Н. Морская динамическая радиохемоэкология. Москва : Энергоатомиздат, 1986. 176 с. [Polikarpov G. G., Egorov V. N. Morskaya dinamicheskaya radiokhemoekologiya. Moscow : Energoatomizdat, 1986, 176 p. (in Russ.)]
Поспелова Н. В., Егоров В. Н., Челядина Н. С., Нехорошев М. В. Содержание меди в органах и тканях Mytilus galloprovincialis Lamarck, 1819 и поток её седиментационного депонирования в донные осадки в хозяйствах черноморской аквакультуры // Морской биологический журнал. 2018a. Т. 3, № 4. С. 64–75. [Pospelova N. V., Egorov V. N., Chelyadina N. S., Nekhoroshev M. V. The copper content in the organs and tissues of Mytilus galloprovincialis Lamarck, 1819 and the flow of its sedimentary deposition into bottom sediments in the farms of the Black Sea aquaculture. Morskoj biologicheskij zhurnal, 2018a, vol. 3, no. 4, pp. 64–75. (in Russ.)]. https://doi.org/10.21072/mbj.2018.03.4.07
Поспелова Н. В., Нехорошев М. В. Содержание каротиноидов в системе «взвешенное вещество – мидия (Mytilus galloprovincialis Lmk.) – биоотложения мидий» // Экология моря. 2003. Вып. 64. С. 62–66. [Pospelova N. V., Nekhoroshev M. V. Balance researches of carotenoids in system “suspended substance – mussel (Mytilus galloprovincialis Lmk.) – biodeposites of mussels”. Ekologiya morya, 2003, iss. 64, pp. 62–66. (in Russ.)]
Поспелова Н. В., Трощенко О. А., Субботин А. А. Изменчивость кормовой базы двустворчатых моллюсков в двухлетнем цикле выращивания на мидийно-устричной ферме (Чёрное море, Голубой залив) // Учёные записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. 2018b. Т. 4 (70), № 4. С. 148–164. [Pospelova N. V., Troshchenko O. A., Subbotin A. A. Variability of food reserve of bivalves in the two-year growing cycle on the mussel-oyster farm (Black Sea, Blue Gulf). Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Biologiya. Khimiya, 2018b, vol. 4 (70), no. 4, pp. 148–164. (in Russ.)]
Финенко Г. А., Романова З. А., Аболмасова Г. И. Экологическая энергетика черноморских мидий // Биоэнергетика гидробионтов / под ред. Г. Е. Шульмана, Г. А. Финенко. Киев : Наукова думка, 1990. С. 32–72. [Finenko G. A., Romanova Z. A., Abolmasova G. I. Ekologicheskaya energetika chernomorskikh midii. In: Bioenergetika gidrobiontov / G. E. Shulman, G. A. Finenko (Eds). Kiev : Naukova dumka, 1990, pp. 32–72. (in Russ.)]
Фокина Н. Н., Нефедова З. А, Немова Н. Н. Липидный состав мидий Mytilus edulis L. Белого моря. Влияние некоторых факторов среды обитания. Петрозаводск : Изд-во КарНЦ РАН, 2010. 243 с. [Fokina N. N., Nefedova Z. A., Nemova N. N. Lipidnyi sostav midii Mytilus edulis L. Belogo morya. Vliyanie nekotorykh faktorov sredy obitaniya. Petrozavodsk : Izd-vo KarNTs RAN, 2010, 243 p. (in Russ.)]
Холодов В. И., Пиркова А. В., Ладыгина Л. В. Выращивание мидий и устриц в Чёрном море. Воронеж : Изд-во ООО «Издат-Принт», 2017. 508 с. [Kholodov V. I., Pirkova A. V., Ladygina L. V. Cultivation of Mussels and Oysters in the Black Sea. Voronezh : Izd-vo OOO “Izdat-Print”, 2017, 508 р. (in Russ.)]
Ahsan U., Kamran Z., Raza I., Ahmad S., Babar W., Riaz M. H., Iqbal Z. Role of selenium in male reproduction – A review. Animal Reproduction Science, 2014, vol. 146, iss. 1–2, pp. 55–62. https://doi.org/10.1016/j.anireprosci.2014.01.009
Hu B.-Q., Liu Y., Wen C.-G., Li A.-H., Hu X.-P., Wu D., Hu X.-J., Tao Z.-Y. Cloning and expression of selenoprotein W from pearl mussels Cristaria plicata. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2014, vol. 167, pp. 8–15. https://doi.org/10.1016/j.cbpb.2013.09.008
Fisher N. S., Teyssié J.-L., Fowler S. W., Wang W.-X. Accumulation and retention of metals in mussels from food and water: A comparison under field and laboratory conditions. Environmental Science & Technology, 1996, vol. 30, iss. 11, pp. 3232–3242. https://doi.org/10.1021/es960009u
Goede A. A., Wolterbeek H. Th., Koese M. J. Selenium concentrations in the marine invertebrates Macoma balthica, Mytilus edulis, and Nereis diversicolor. Archives of Environmental Contamination and Toxicology, 1993, vol. 25, pp. 85–89. https://doi.org/10.1007/BF00230716
Hadj Z., Boutiba Z., Belbachir B. Mytilus galloprovincialis as mussel watch for butyltins, tin, copper and zinc contamination, from antifouling paint particles, in West Algerian coastal waters. Journal of Environmental Protection, 2012, vol. 3, iss. 9, pp. 1047–1053. https://doi.org/10.4236/jep.2012.39122
Kapranova L. L., Nekhoroshev M. V., Malakhova L. V., Ryabushko V. I., Kapranov S. V., Kuznetsova T. V. Fatty acid composition of gonads and gametes in the Black Sea bivalve mollusk Mytilus galloprovincialis Lam. at different stages of sexual maturation. Journal of Evolutionary Biochemistry and Physiology, 2019, vol. 55, iss. 6, pp. 448–455. https://doi.org/10.1134/S0022093019060024
Kopp T. I., Outzen M., Olsen A., Vogel U., Ravn-Haren G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. Genes and Nutrition, 2018, vol. 13, art. no. 20 (10 p.). https://doi.org/10.1186/s12263-018-0608-4
Lowe D. M., Moore M. N. The cytochemical distributions of zinc (Zn II) and iron (Fe III) in the common mussel, Mytilus edulis, and their relationship with lysosomes. Journal of the Marine Biological Association of the United Kingdom, 1979, vol. 59, iss. 4, pp. 851–858. https://doi.org/10.1017/S0025315400036882
Mauvais-Jarvis F., Clegg D. J., Hevener A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocrine Reviews, 2013, vol. 34, iss. 3, pp. 309–338. https://doi.org/10.1210/er.2012-1055
Nikonova L. L., Nekhoroshev M. V., Ryabushko V. I. Total testosterone and estradiol in the gonads and gametes of the mussel Mytilus galloprovincialis Lam. Journal of Evolutionary Biochemistry and Physiology, 2017, vol. 53, iss. 6, pp. 519–522. https://doi.org/10.1134/S0022093017060114
Orban E., Di Lena G., Nevigato T., Casini I., Marzetti A., Caproni R. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites. Food Chemistry, 2002, vol. 77, iss. 1, pp. 57–65. https://doi.org/10.1016/S0308-8146(01)00322-3
Rowley A. F., Vogan C. L., Taylor G. W., Clare A. S. Prostaglandins in non-insectan invertebrates: Recent insights and unsolved problems. Journal of Experimental Biology, 2005, vol. 208, iss. 1, pp. 3–14. https://doi.org/10.1242/jeb.01275
Scott A. P. Is there any value in measuring vertebrate steroids in invertebrates? General and Comparative Endocrinology, 2018, vol. 265, pp. 77–82. https://doi.org/10.1016/j.ygcen.2018.04.005
Soto M., Ireland M. P., Marigómez I. Changes in mussel biometry on exposure to metals: Implications in estimation of metal bioavailability in ‘Mussel–Watch’ programmes. Science of the Total Environment, 2000, vol. 247, iss. 2–3, pp. 175–187. https://doi.org/10.1016/s0048-9697(99)00489-1
Stanley-Samuelson D. W. The biological significance of prostaglandins and related eicosanoids in invertebrates. American Zoologist, 1994, vol. 34, iss. 6, pp. 589–598. https://doi.org/10.1093/icb/34.6.589
George S. G., Pirie B. J. S. Metabolism of zinc in the mussel, Mytilus edulis (L.): A combined ultrastructural and biochemical study. Journal of the Marine Biological Association of the United Kingdom, 1980, vol. 60, iss. 3, pp. 575–590. https://doi.org/10.1017/S0025315400040273
Tadasi N., Hiroshi O. Distribution of prostaglandins in the animal kingdom. Biochimica et Biophysica Acta (BBA) – Lipids and Lipid Metabolism, 1976, vol. 431, iss. 1, pp. 127–131. https://doi.org/10.1016/0005-2760(76)90266-6