Production characteristics of Porphyridium purpureum (Bory) Drew et Ross semi-continuous culture at low irradiance
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
The red microalga Porphyridium purpureum (Bory de Saint-Vincent, 1797) Drew et Ross, 1965 is of great interest to researchers as a source of various biologically valuable substances, with their content in cells being determined by cultivation conditions. Phycobiliproteins concentration in P. purpureum cells depends directly on nitrogen concentration in the culture medium and cell irradiance. Semi-continuous cultivation allows maintaining these parameters at a level given. The aim of the work was to study P. purpureum culture growth and B-phycoerythrin (B-PE) accumulation and production at low irradiance, with minimal rates of pigment photodestruction. P. purpureum semi-continuous (quasi-continuous) cultivation was carried out at a specific flow rate of 0.1 and 0.2 day−1 and mean surface irradiance of 5 and 25 W·m−2. P. purpureum culture productivity increased by 1.6–17 times both with a rise in surface irradiance 5 to 25 W·m−2 and an increase in the medium specific flow rate 0.1 to 0.2 day−1. Maximum productivity values for the experimental conditions (0.21 g·L−1·day−1) were recorded at 25 W·m−2 and 20 % medium specific flow rate, but those were 1.5–2 times lower than the precalculated ones. In P. purpureum cells, protein and B-PE concentrations decreased both with an increase in surface irradiance (by 15–20 %) and with a rise in a specific flow rate (by 1.5 times) for all the variants. The shifts in protein and B-PE concentration in P. purpureum culture had a unidirectional character as well; those mainly corresponded to the shift in the culture density. P. purpureum B-PE productivity increased by 1.5–1.9 times with a rise in surface irradiance 5 to 25 W·m−2. Maximum B-PE productivity (13 mg·L−1·day−1) was recorded for the variants of the experiment with a surface irradiance of 25 W·m−2 (0.1 and 0.2 day−1). An increase in specific irradiance of P. purpureum cells 7 to 26 W·g−1 resulted in a rise in biomass productivity by 2.6 times; in B-PE productivity, by 1.8 times; and in protein productivity, by 1.7 times. In the experiment, irradiance was the factor determining the production characteristics of P. purpureum culture, and it was confirmed by the data obtained.
Authors
References
Біохімія червоних водоростей / О. Г. Судьїна, Є. І. Шнюкова, П. О. Мушак, С. І. Лось, Р. М. Фомішина, Н. Д. Тупік, Г. І. Лозова. Київ : Інститут ботаніки ім. М. Г. Холодного, 2007. 320 с. [Biokhimiia chervonykh vodorostei / O. H. Sudina, Ye. I. Shniukova, P. O. Mushak, S. I. Los, R. M. Fomishyna, N. D. Tupik, H. I. Lozova. Kyiv : Institut botaniki im. M. G. Kholodnogo, 2007, 320 p. (in Ukr.)]
Дробецкая И. В. Влияние условий минерального питания на рост и химический состав Spirulina platensis (Nordst.) Geitler : автореф. дис. … канд. биол. наук : 03.00.17. Севастополь, 2005. 26 с. [Drobetskaya I. V. Vliyanie uslovii mineral’nogo pitaniya na rost i khimicheskii sostav Spirulina platensis (Nordst.) Geitler : avtoref. dis. … kand. biol. nauk : 03.00.17. Sevastopol, 2005, 26 p. (in Russ.)]
Маркина Ж. В., Айздайчер Н. А. Влияние меди на численность, морфологию клеток и содержание фотосинтетических пигментов микроводоросли Porphyridium purpureum // Морской биологический журнал. 2019. Т. 4, № 4. С. 34–40. [Markina Zh. V., Aizdaicher N. A. The effect of copper on the abundance, cell morphology and content of photosynthetic pigments in the microalga Porphyridium purpureum. Morskoj biologicheskij zhurnal, 2019, vol. 4, no. 4, pp. 34–40. (in Russ.)]. https://doi.org/10.21072/mbj.2019.04.4.03
Методы физиолого-биохимического исследования водорослей в гидробиологической практике. Киев : Наукова думка, 1975. 247 с. [Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike. Kyiv : Naukova dumka, 1975, 247 p. (in Russ.)]
Минюк Г. С., Дробецкая И. В., Чубчикова И. Н., Терентьева Н. В. Одноклеточные водоросли как возобновляемый биологический ресурс: обзор // Морской экологический журнал. 2008. Т. 7, № 2. С. 5–23. [Minyuk G. S., Drobetskaya I. V., Chubchikova I. N., Terent’eva N. V. Unicellular algae as renewable biological resource: A review. Morskoj ekologicheskij zhurnal, 2008, vol. 7, no. 2, pp. 5–23. (in Russ.)]
Стадничук И. Н. Фикобилипротеины. Москва : ВИНИТИ, 1990. 193 с. (Итоги науки и техники. Серия: Биологическая химия ; т. 40). [Stadnichuk I. N. Fikobiliproteiny. Moscow : VINITI, 1990, 193 p. (Itogi nauki i tekhniki. Seriya: Biologicheskaya khimiya ; vol. 40). (in Russ.)]
Тренкеншу Р. П Влияние света на макромолекулярный состав микроводорослей в непрерывной культуре невысокой плотности (часть 1) // Вопросы современной альгологии. 2017. № 2 (14). [Trenkenshu R. P. Influence of light on macromolecular composition of microalgae in continuous culture of low density (part 1). Voprosy sovremennoi al’gologii, 2017, no. 2 (14). (in Russ.)]. http://www.algology.ru/1180 [accessed: 02.03.2020].
Тренкеншу Р. П., Белянин В. Н. Влияние элементов минерального питания на продуктивность водоросли Platymonas viridis Rouch. // Биология моря. 1979. Вып. 51. С. 41–46. [Trenkenshu R. P., Belyanin V. N. Effect of mineral nutrients on productivity of Platymonas viridis Rouch. Biologiya morya, 1979, iss. 51, pp. 41–46. (in Russ.)]
Тренкеншу Р. П., Терсков И. А., Сидько Ф. Я. Плотные культуры морских микроводорослей // Известия Сибирского отделения Академии наук СССР. 1981. № 5. С. 75–82. (Серия биологических наук ; вып. 1). [Trenkenshu R. P., Terskov I. A., Sid’ko F. Ya. Plotnye kul’tury morskikh mikrovodoroslei. Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR, 1981, no. 5, pp. 75–82. (Seriya biologicheskikh nauk ; iss. 1). (in Russ.)]
Упитис В. В., Пакалне Д. С., Шулце И. Ф. Оптимизация минерального питания красной морской водоросли Porphyridium cruentum // Известия АН Латвийской ССР. 1989. Т. 505, № 8. С. 95–104. [Upitis V. V., Pakalne D. S., Shultse I. F. Optimizatsiya mineral’nogo pitaniya krasnoi morskoi vodorosli Porphyridium cruentum. Izvestiya AN Latviiskoi SSR, 1989, vol. 505, no. 8, pp. 95–104. (in Russ.)]
Цоглин Л. Н., Пронина Н. А. Биотехнология микроводорослей. Москва : Научный мир, 2013. 184 с. [Tsoglin L. N., Pronina N. A. Biotekhnologiya mikrovodoroslei. Moscow : Nauchnyi mir, 2013, 184 p. (in Russ.)]
Algarra P., Ruediger W. Acclimation processes in the light harvesting complex of the red alga Porphyridium purpureum (Bory) Drew et Ross, according to irradiance and nutrient availability. Plant, Cell & Environment, 1993, vol. 16, iss. 2, pp. 149–159. https://doi.org/10.1111/j.1365-3040.1993.tb00856.x
Borowitzka M. A. Microalgae as source of pharmaceutical and other biologically active compounds. Journal of Applied Phycology, 1995, vol. 7, pp. 3–15. https://doi.org/10.1007/BF00003544
Fabregas J., Garcia D., Morales E., Dominguez A., Otero A. Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. Journal of Fermentation and Bioengineering, 1998, vol. 86, iss. 5, pp. 477–481. https://doi.org/10.1016/S0922-338X(98)80155-4
Falkowski P. G., Owens T. G. Light–shade adaptation: Two strategies in marine phytoplankton. Plant Physiology, 1980, vol. 66, iss. 4, pp. 592–595. https://doi.org/10.1104/pp.66.4.592
Fuentes-Grunewald C., Bayliss C., Zanain M., Pooley C., Scolamacchia M., Silkina A. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier transform infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresource Technology, 2015, vol. 189, pp. 357–363. https://doi.org/10.1016/j.biortech.2015.04.042
Gudvilovich I. N., Borovkov A. B. Production characteristics of the microalga Porphyridium purpureum (Bory) Drew Ross (Rhodophyta) in batch and quasi-continuous culture. International Journal on Algae, 2014, vol. 16, iss. 3, pp. 271–283. https://doi.org/10.1615/InterJAlgae.v16.i3.70
John W., Steinbiss J., Zetsche K. Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta, 1984, vol. 16, no. 6, pp. 536–539. https://doi.org/10.1007/BF00407086
Kathiresan S., Sarada R., Bhattacharya S., Ravishankar A. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnology and Bioengineering, 2006, vol. 96, iss. 3, pp. 456–463. https://doi.org/10.1002/bit.21138
Li S., Ji L., Shi Q., Wu H., Fan J. Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. Bioresource Technology, 2019, vol. 292, art. no. 122048 (16 p.). https://doi.org/10.1016/j.biortech.2019.122048
Li T., Xu J., Wu H., Jiang P., Chen Z., Xiang W. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine Drugs, 2019, vol. 17, iss. 2, art. no. 124 (16 p.). https://doi.org/10.3390/md17020124
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, iss. 1, pp. 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Sosa-Hernández J. E., Rodas-Zuluaga L. I., Castillo-Zacarías C., Rostro-Alanís M., Cruz R., Carrillo-Nieves D., Salinas-Salazar C., Fuentes-Grunewald C., Llewellyn C. A., Olguín E. J., Lovitt R. W., Iqbal H. M. N., Parra-Saldívar R. Light intensity and nitrogen concentration impact on the biomass and phycoerythrin production by Porphyridium purpureum. Marine Drugs, 2019, vol. 17, iss. 8, pp. 460 (12 p.). https://doi.org/10.3390/md17080460
Velea S., Ilie L., Filipescu L. Optimization of Porphyridium purpureum culture growth using two variables experimental design: Light and sodium bicarbonate. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2011, vol. 73, no. 4, pp. 81–94.