Kuz’mina V. V., Slynko E. E., Kulivatskaya E. A., Karpova E. P., Dinh Cu Nguyen. Activity of peptidases and glycosidases of the digestive tract in some species of bony fish of Vietnam. Marine Biological Journal, 2022, vol. 7, no. 1, pp. 55-64. https://doi.org/10.21072/mbj.2022.07.1.05



For the first time, the activity and pH dependence of digestive enzymes were studied in fish inhabiting the Mekong Delta: duskyfin glassy perchlet Parambassis wolffii, smallscale croaker Boesemania microlepis, catfish Pangasius macronema, and representatives of the family Cyprinidae. Significant interspecific differences were revealed in the level of peptidase and glycosidase activity providing hydrolysis of protein and carbohydrate food components. The greatest interspecific differences are characteristic of glycosidases: the level of enzymatic activity in Cyprinidae fish exceeds that in P. wolffii by 13.6 times. The differences in the level of peptidase activity in fish of different species are lower: in the case of the activity of stomach enzymes in P. wolffii, the values are 1.8 times higher than those in P. macronema, and in the case of total activity of stomach and intestinal enzymes in the same species, the values are 1.5 times higher. The data obtained confirm the concept that the digestive hydrolase activity depends on the fish feeding spectrum. The activity of intestinal enzymes decreases more significantly in the acidic pH zone than in the basic one. Consequently, acidification of the intestinal environment will negatively affect the digestive processes in these fish species.


V. V. Kuz’mina


E. E. Slynko
senior researcher, PhD



E. A. Kulivatskaya
junior researcher



E. P. Karpova
senior researcher, PhD



Dinh Cu Nguyen
head of laboratory


Веригина И. А., Жолдасова И. М. Эколого-морфологические особенности пищеварительной системы костистых рыб. Ташкент : ФАН, 1982. 154 с. [Verigina I. A., Zholdasova I. M. Ekologo-morfologicheskie osobennosti pishchevaritel’noi sistemy kostistykh ryb. Tashkent : FAN, 1982, 154 p. (in Russ.)]

Высоцкая Р. У., Немова Н. Н. Лизосомы и лизосомальные ферменты рыб. Москва : Наука, 2008. 284 с. [Vysotskaya R. U., Nemova N. N. Lizosomy i lizosomal’nye fermenty ryb. Moscow : Nauka, 2008, 284 p. (in Russ.)]

Кузьмина В. В. Защитная функция пищеварительного тракта рыб // Вопросы ихтиологии. 1995. Т. 35, № 1. С. 86–93. [Kuz’mina V. V. Zashchitnaya funktsiya pishchevaritel’nogo trakta ryb. Voprosy ikhtiologii, 1995, vol. 35, no. 1, pp. 86–93. (in Russ.)]

Кузьмина В. В. Процессы пищеварения у рыб. Новые факты и гипотезы. Ярославль : Филигрань, 2018. 300 с. [Kuz’mina V. V. Protsessy pishchevareniya u ryb. Novye fakty i gipotezy. Yaroslavl : Filigran’, 2018, 300 p. (in Russ.)]

Уголев А. М., Иезуитова Н. Н. Определение активности инвертазы и других дисахаридаз // Исследование пищеварительного аппарата у человека / под ред. А. М. Уголева. Ленинград : Наука, 1969. С. 192–196. [Ugolev A. M., Iezuitova N. N. Opredelenie aktivnosti invertazy i drugikh disakharidaz. In: Issledovanie pishchevaritel’nogo apparata u cheloveka / A. M. Ugolev (Ed.). Leningrad : Nauka, 1969, pp. 192–196. (in Russ.)]

Уголев А. М., Кузьмина В. В. Распределение активности пищеварительных гидролаз в эпителиальном, субмукозном и мышечно-серозном слоях кишечника рыб // Доклады Академии наук. 1992. Т. 326, № 3. С. 566–569. [Ugolev A. M., Kuz’mina V. V. Distribution of digestive hydrolases activity in epithelial, submucosal and musculoserous layers of fish intestine. Doklady Akademii nauk, 1992, vol. 326, no. 3, pp. 566–569. (in Russ.)]

Уголев А. М., Кузьмина В. В. Пищеварительные процессы и адаптации у рыб. Санкт-Петербург : Гидрометеоиздат, 1993. 238 с. [Ugolev A. M., Kuz’mina V. V. Pishchevaritel’nye protsessy i adaptatsii u ryb. Saint Petersburg : Gidrometeoizdat, 1993, 238 p. (in Russ.)]

Ashie I. N. A., Simpson B. K. Proteolysis in food myosystems – A review. Journal of Food Biochemistry, 1997, vol. 21, iss. 5, pp. 91–123. https://doi.org/10.1111/j.1745-4514.1997.tb00218.x

Askarian F., Zhou Z., Olsen R. E., Sperstad S., Ringo E. Culturable autochthonous bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture Research, 2012, vols 326–329, pp. 1–8. https://doi.org/10.1016/j.aquaculture.2011.10.016

Austin B. The bacterial microflora of fish, revised. The Scientific World Journal, 2006, vol. 6, pp. 931–945. https://doi.org/10.1100/tsw.2006.181

Bakke A. M., Glover Ch., Krogdahl A. Feeding, digestion and absorption of nutrients. In: The Multifunctional Gut of Fish / M. Grosell, A. P. Farrell, C. J. Brauner (Eds). Amsterdam ; Boston : Academic Press, 2011, pp. 57–110. (Series: Fish Physiology ; vol. 30). https://doi.org/10.1016/S1546-5098(10)03002-5

Baird I. G., Flaherty M. S., Phylavanh B. Rhythms of the river: Lunar phases and migrations of small carp (Cyprinidae) in the Mekong River. Natural History Bulletin of the Siam Society, 2003, vol. 51, pp. 5–36.

Baird I. G., Phylavanh B., Vongsenesouk B., Xaiyamanivong K. The ecology and conservation of the smallscale croaker Boesemania microlepis (Bleeker, 1858–1859) in the mainstream Mekong River, Southern Laos. Natural History Bulletin of the Siam Society, 2001, vol. 49, pp. 161–176.

Belchior S. G. E., Vacca G. Fish protein hydrolysis by a psychrotrophic marine bacterium isolated from the gut of hake (Merluccius hubbsi). Canadian Journal of Microbiology, 2006, vol. 52, no. 12, pp. 1266–1271. https://doi.org/10.1139/w06-083

Castillo-Yáňez F. J., Pacheco-Aguilar R., García-Carreňo F. L., Navarrete-Del Toro M. Á. Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caeruleus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, vol. 140, iss. 1, pp. 91–98. http://dx.doi.org/10.1016/j.cbpc.2004.09.031

Esakkiraj P., Immanuel G., Sowmya S. V., Iyapparaj P., Palavesam A. Evaluation of protease-producing ability of fish gut isolate Bacillus cereus. Food and Bioprocess Technology, 2009, vol. 2, pp. 383–390. https://doi.org/10.1007/s11947-007-0046-6

Fange R., Grove D. Digestion. In: Bioenergetics and Growth / W. S. Hoar, D. J. Randall, J. R. Brett (Eds). New York : Academic Press, 1979, pp. 161–260. (Book series: Fish Physiology ; vol. 8).

Ganguly S., Prasad A. Microflora in fish digestive tract plays significant role in digestion and metabolism. Reviews in Fish Biology and Fisheries, 2012, vol. 22, pp. 11–16. https://doi.org/10.1007/s11160-011-9214-x

García-Carreňo F. L., Albuquerque-Cavalcanti C., Navarrete del Toro M. A., Zaniboni-Filho E. Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): Characteristics and effects of protein quality. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, vol. 132, iss. 2, pp. 343–352. https://doi.org/10.1016/S1096-4959(02)00038-6

Gawlicka A., Leggiadro C. T., Gallant J. W., Douglas S. E. Cellular expression of the pepsinogen and proton pump genes in the stomach of winter flounder as determined by in situ hybridization. Journal of Fish Biology, 2001, vol. 58, iss. 2, pp. 529–536. https://doi.org/10.1111/j.1095-8649.2001.tb02271.x

Hau P. V., Benjakul S. Purification and characterization of trypsin from pyloric caeca of bigeye snapper (Pricanthus macracanthus). Journal of Food Biochemistry, 2006, vol. 30, iss. 4, pp. 478–495. https://doi.org/10.1111/j.1745-4514.2006.00089.x

Hidalgo M. C., Urea E., Sanz A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 1999, vol. 170, iss. 3–4, pp. 267–283. https://doi.org/10.1016/S0044-8486(98)00413-X

Hoshino T., Ishizaki K., Sakamoto T., Kumeta H., Yumoto I., Matsuyama H., Ohgiya S. Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Letters in Applied Microbiology, 1997, vol. 25, iss. 1, pp. 70–72. https://doi.org/10.1046/j.1472-765x.1997.00183.x

Izvekova G. I., Plotnikov A. O. Hydrolytic activity of symbiotic microflora enzymes in pike (Esox lucius L.) intestines. Inland Water Biology, 2011, vol. 4, no. 1, pp. 72–77. https://doi.org/10.1134/S1995082911010081

Jasmine S., Begum M. Biological aspects of Barbonymus gonionotus (Bleeker, 1849) in the Padma River, Bangladesh. International Journal of Fisheries and Aquatic Studies, 2016, vol. 4, pp. 661–665.

Kapoor B. G., Smit H., Verighina I. A. The alimentary canal and digestion in teleosts. Advances in Marine Biology, 1975, vol. 13, pp. 109–239.

Kishimura H., Klomklao S., Benjakul S., Chun B.-S. Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chemistry, 2008, vol. 106, iss. 1, pp. 194–199. https://doi.org/10.1016/j.foodchem.2007.05.056

Kottelat M., Widjanarti E. The fishes of Danau Sentarum National Park and the Kapuas Lakes area, Kalimantan Barat, Indonesia. Raffles Bulletin of Zoology – Supplement, 2005, vol. 13, pp. 139–173.

Krogdahl Å., Sundby A., Holm H. Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 2015, vol. 449, pp. 27–36. https://doi.org/10.1016/j.aquaculture.2015.02.032

Kumar S., Garcia-Carreno F. L., Chakrabarti R., Toro M. A. N., Cordova-Murueta J. H. Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: Partial characterization and protein hydrolysis efficiency. Aquaculture Nutrition, 2007, vol. 13, iss. 5, pp. 381–388. https://doi.org/10.1111/j.1365-2095.2007.00488.x

Kuz’mina V. V., Skvortsova E. G., Zolotareva G. V., Sheptitskiy V. A. Influence of pH upon the activity of glycosidases and proteinases of intestinal mucosa, chyme and microbiota in fish. Fish Physiology and Biochemistry, 2011, vol. 37, no. 3, pp. 345–357. https://doi.org/10.1007/s10695-010-9426-3

Kuz’mina V. V., Komov V. T., Tarleva A. F., Sheptitskiy V. A. Effect of dietary metal exposure on the locomotor reactions and food consumption in common carp Cyprinus carpio (L.). Inland Water Biology, 2019, vol. 12, no. 3, pp. 356–364. https://doi.org/10.1134/S1995082919030106

Kuz’mina V. V., Zolotareva G. V., Sheptitskiy V. A. Proteolytic activity in some freshwater animals and associated microflora in a wide pH range. Fish Physiology and Biochemistry, 2017, vol. 43, iss. 2, pp. 373–383. https://doi.org/10.1007/s10695-016-0293-4

Mohsin A. K. M., Ambak M. A. Freshwater Fishes of Peninsular Malaysia. Serdan : Penerbit University Pertanian Malaysia, 1983, 284 p.

Natalia Y., Hashim R., Ali A., Chong A. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture, 2004, vol. 233, iss. 1–4, pp. 305–320. https://doi.org/10.1016/j.aquaculture.2003.08.012

Pavlisko A., Rial A., Coppes Z. Purification and characterization of a protease from the pyloric caeca of menhaden (Brevoortia spp.) and mullet (Mugil spp.) from the southwest Atlantic region. Journal of Food Biochemistry, 1999, vol. 23, iss. 2, pp. 225–241. https://doi.org/10.1111/j.1745-4514.1999.tb00016.x

Rainboth W. J. Fishes of the Cambodian Mekong. Rome : FAO, 1996, 265 p. (FAO species identification field guide for fishery purposes).

Ray A. K., Ghosh K., Ringø E. Enzyme-producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 2012, vol. 18, iss. 5, pp. 465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x

Sugita H., Kawasaki J., Deguchi Y. Production of amylase by the intestinal microflora in cultured freshwater fish. Letters in Applied Microbiology, 1997, vol. 24, iss. 2, pp. 105–108. https://doi.org/10.1046/j.1472-765x.1997.00360.x

Taki Y. An Analytical Study of the Fish Fauna of the Mekong Basin as a Biological Production System in Nature. Tokyo : Research Institute of Evolutionary Biology, 1978, 77 p. (Research Institute of Evolutionary Biology special publications ; no. 1).

Tran D. D., Shibukawa K., Nguyen P. T., Ha H. P., Tran L. X., Mai H. V., Utsugi K. Fishes of the Mekong Delta, Vietnam. Can Tho : Can Tho University Publishing House, 2013, 174 p.

Tuan L. A., Hoanh C. T., Miller F., Sinh B. T. Flood and salinity management in the Mekong Delta, Vietnam. In: Challenges to Sustainable Development in the Mekong Delta: Regional and National Policy Issues and Research Needs: Literature Analysis / T. T. Be, B. T. Sinh, F. Miller (Eds). Bangkok : The Sustainable Mekong Research Network (Sumernet), 2007, pp. 15–68.

Ushiyama H., Fujimori T., Shibata T., Yoshimura K. Studies on carbohydrases in the pyloric caeca of the salmon Oncorhynchus keta. Bulletin of the Faculty of Fisheries Hokkaido University, 1965, vol. 16, no. 3, pp. 183–188.

Wang B., Wang C., Mims S. D., Xiong Y. L. Characterization of the proteases involved in hydrolyzing paddlefish (Polyodon spathula) myosin. Journal of Food Biochemistry, 2000, vol. 24, iss. 6, pp. 503–515. https://doi.org/10.1111/j.1745-4514.2000.tb00719.x


The work was carried out within the framework of the state research assignments “Systematics, variety, biology, and ecology of aquatic and seaboard invertebrates; the structure of populations and communities in continental waters” (No. 121051100109-1) and “Population, morphological, structural, and physiological adaptations of parasites of freshwater hydrobionts in changing environmental conditions” (No. 121051100100-8), as well as within the framework of the Ekolan E-3.4 project “The Mekong River ecosystem under global climate changes and anthropogenic load.”



Download data is not yet available.