##plugins.themes.bootstrap3.article.main##

Klindukh M. P. Dynamics of free amino acids in the brown alga Fucus vesiculosus Linnaeus, 1753 from the Barents Sea throughout the year. Marine Biological Journal, 2022, vol. 7, no. 3, pp. 44-59. URL: https://marine-biology.ru/mbj/article/view/352

##plugins.themes.bootstrap3.article.details##

Abstract

Free amino acids (FAA) are a significant biochemical component of any cell. Their composition and content depend on physiological state, abiotic environmental factors, and a developmental phase of the organism. Their functions in plants are very diverse; those include participation in both the synthesis of proteins and other compounds and the adaptation to adverse environmental conditions. Information on the FAA dynamics is of key importance for understanding their role in formation of algae resistance to varying environmental factors. The aim of this study is to determine the FAA content in the brown alga Fucus vesiculosus and its seasonal changes, as well as to reveal the dependence on environmental factors and the alga developmental phase. The alga for research was sampled in the Kola Bay littoral (the Barents Sea) during low tide once a month from December 2015 to December 2016. The middle part of the thallus was used for the study. The FAA qualitative and quantitative composition was determined by high-performance liquid chromatography. The FAA qualitative composition did not change throughout the year; in the FAA pool, glutamic and aspartic acids, alanine, and proline prevailed. The FAA content varied throughout the year; the maximum amount was recorded in spring–summer. The FAA content depended on external environmental factors. The correlations were determined between the content of individual FAA and air temperature, water temperature, and salinity. The FAA dynamics in different developmental phases of F. vesiculosus was associated with processes occurring in the alga; it is affected by growth rate, cell metabolic activity, photosynthesis rate, and generative development. Each phase was characterized by its own dynamics of the FAA content. Based on the dynamics of the FAA concentration in F. vesiculosus, correspondences were found with the developmental phases – dormancy, growth activation, growth, and storage. Free glutamate and aspartate may act as one of the reserve sources of organic nitrogen in this alga. Apparently, the transport of organic forms of nitrogen in F. vesiculosus thallus is carried out by glutamate, aspartate, alanine, and proline.

Authors

M. P. Klindukh

researcher

https://orcid.org/0000-0002-4011-2387

https://elibrary.ru/author_items.asp?id=659904

References

Барашков Г. К., Вахрашина А. В., Петров Ю. Е. Сезонные изменения химического состава у фукусовых водорослей Баренцева моря Кольского полуострова // Растительные ресурсы. 1966. Т. 2, вып. 2. С. 191–200. [Barashkov G. K., Vakhrashina A. V., Petrov Yu. E. Sezonnye izmeneniya khimicheskogo sostava u fukusovykh vodoroslei Barentseva morya Kol’skogo poluostrova. Rastitel’nye resursy, 1966, vol. 2, iss. 2, pp. 191–200. (in Russ.)]

Воскобойников Г. М., Макаров М. В., Малавенда С. В., Рыжик И. В. Адаптация и регуляция роста у макрофитов Баренцева моря // Вестник Кольского научного центра РАН. Естественные и технические науки. 2015. № 2 (21). С. 40–48. [Voskoboinikov G. M., Makarov M. V., Malavenda S. V., Ryzhik I. V. Adaptation and regulation of growth of macroohytes in the Barents Sea. Vestnik Kol’skogo nauchnogo tsentra RAN. Estestvennye i tekhnicheskie nauki, 2015, no. 2 (21), pp. 40–48. (in Russ.)]

ГОСТ 26185-84. Водоросли морские, травы морские и продукты их переработки. Методы анализа. Москва : Изд-во стандартов, 2004. 34 с. [GOST 26185-84. Vodorosli morskie, travy morskie i produkty ikh pererabotki. Metody analiza. Moscow : Izd-vo standartov, 2004, 34 p. (in Russ.)]

Кольский залив: океанография, биология, экосистемы, поллютанты / отв. ред. Г. Г. Матишов ; Мурм. мор. биол. ин-т КНЦ РАН. Апатиты : КНЦ РАН, 1997. 265 с. [The Kola Bay: Oceanography, Biology, Ecosystems, Pollutants / G. G. Matishov (Ed.) ; Murmansk Mar. Biol. Inst. KSC RAS. Apatity : KNTs RAN, 1997, 265 p. (in Russ.)]

Кольский залив: освоение и рациональное природопользование / отв. ред. Г. Г. Матишов ; Мурм. мор. биол. ин-т КНЦ РАН. Москва : Наука, 2009. 381 с. [Kola Bay: Development and Rational Nature Management / G. G. Matishov (Ed.) ; Murmansk Mar. Biol. Inst. KSC RAS. Moscow : Nauka, 2009, 381 p. (in Russ.)]

Крупнова Т. Н. Особенности развития спороносной ткани у ламинарии японской под воздействием изменяющихся условий среды // Известия ТИНРО. 2002. Т. 130, № 2. С. 474–482. [Krupnova T. N. Osobennosti razvitiya sporonosnoi tkani u laminarii yaponskoi pod vozdeistviem izmenyayushchikhsya uslovii sredy. Izvestiya TINRO, 2002, vol. 130, no. 2, pp. 474–482. (in Russ.)]

Кузнецов Л. Л., Шошина Е. В. Фитоценозы Баренцева моря (физиологические и структурные характеристики). Апатиты : КНЦ РАН, 2003. 308 с. [Kuznetsov L. L., Schoschina E. V. Phytocenoses of the Barents Sea (Physiological and Structural Characteristics). Apatity : KNTs RAN, 2003, 308 p. (in Russ.)]

Малавенда С. В., Воскобойников Г. М. Влияние абиотических факторов на структуру популяции бурой водоросли Fucus vesiculosus Восточного Мурмана (Баренцево море) // Биология моря. 2008. Т. 34, № 1. С. 30–34. [Malavenda S. V., Voskoboinikov G. M. Influence of abiotic factors on the structure of brown alga Fucus vesiculosus population in East Murman (Barents Sea). Biologiya morya, 2008, vol. 34, no. 1, pp. 30–34. (in Russ.)]

Методы физиолого-биохимического исследования водорослей в гидробиологической практике / отв. ред. А. В. Топачевский. Киев : Наукова думка, 1975. 248 с. [Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike / A. V. Topachevsky (Ed.). Kyiv : Naukova dumka, 1975, 248 p. (in Russ.)]

Репина О. И. Фукоиды Белого моря: химический состав и перспективы использования // Морские прибрежные экосистемы: водоросли, беспозвоночные и продукты их переработки : материалы II науч.-практ. конф., Архангельск, 4–7 окт. 2005 г. Москва : ВНИРО, 2005. С. 216–219. [Repina O. I. Fukoidy Belogo morya: khimicheskii sostav i perspektivy ispol’zovaniya. In: Morskie pribrezhnye ekosistemy: Vodorosli, bespozvonochnye i produkty ikh pererabotki : materialy II nauch.-prakt. konf., Arkhangelsk, 4–7 Oct., 2005. Moscow : VNIRO, 2005, pp. 216–219. (in Russ.)]

Руденко А. О., Карцова Л. А., Снарский С. И. Определение важнейших аминокислот в сложных объектах биологического происхождения методом обращённо-фазовой ВЭЖХ с получением фенилтиогидантоинов аминокислот // Сорбционные и хроматографические процессы. 2010. Т. 10, вып. 2. С. 223–230. [Rudenko A. O., Kartsova L. A., Snarskiy S. I. Opredelenie vazhneishikh aminokislot v slozhnykh ob”ektakh biologicheskogo proiskhozhdeniya metodom obrashchenno-fazovoi VEZhKh s polucheniem feniltiogidantoinov aminokislot. Sorbtsionnye i khromatograficheskie protsessy, 2010, vol. 10, iss. 2, pp. 223–230. (in Russ.)]

Рыжик И. В. Фотосинтетическая активность Fucus vesiculosus L. и Fucus distichus L. Баренцева моря после полярной ночи // Материалы XXV конференции молодых учёных ММБИ. Апатиты : КНЦ РАН. 2007. С. 177–182. [Ryzhik I. V. Fotosinteticheskaya aktivnost’ Fucus vesiculosus L. i Fucus distichus L. Barentseva morya posle polyarnoi nochi. In: Materialy XXV konferentsii molodykh uchenykh MMBI. Apatity : KNTs RAN, 2007, pp. 177–182. (in Russ.)]

Angell A. R., Mata L., de Nys R., Paul N. A. Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta). Journal of Phycology, 2014, vol. 50, iss. 1, pp. 216–226. https://doi.org/10.1111/jpy.12154

Diouris M. Long-distance transport of 14C-labelled assimilates in the Fucales: Nature of translocated substances in Fucus serratus. Phycologia, 1989, vol. 28, iss. 4, pp. 504–511. https://doi.org/10.2216/i0031-8884-28-4-504.1

Diouris M., Floc’h J. Y. Long-distance transport of C-labelled assimilates in the Fucales: Directionality, pathway and velocity. Marine Biology, 1984, vol. 78, pp. 199–204. https://doi.org/10.1007/BF00394701

Dittami S. M., Gravot A., Renault D., Goulitquer S., Eggert A., Bouchereau A., Boyen C., Tonon T. Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant, Cell and Environment, 2011, vol. 34, iss. 4, pp. 629–642. https://doi.org/10.1111/j.1365-3040.2010.02268.x

Galili G., Höfgen R. Metabolic engineering of amino acids and storage proteins in plants. Metabolic Engineering, 2002, vol. 4, iss. 1, pp. 3–11. https://doi.org/10.1006/mben.2001.0203

Gomez I., Wiencke C. Seasonal changes in C, N and major organic compounds and their significance to morpho-functional processes in the endemic Antarctic brown alga Ascoseira mirabilis. Polar Biology, 1998, vol. 19, pp. 115–124. https://doi.org/10.1007/s003000050222

Harris J. P., Logan B. A. Seasonal acclimatization of thallus proline contents of Mastocarpus stellatus and Chondrus crispus: Intertidal rhodophytes that differ in freezing tolerance. Journal of Phycology, 2018, vol. 54, iss. 3, pp. 419–422. https://doi.org/10.1111/jpy.12624

Hildebrandt T. M., Nunes Nesi A., Araujo W. L., Braun H.-P. Amino acid catabolism in plants. Molecular Plant, 2015, vol. 8, iss. 11, pp. 1563–1579. https://doi.org/10.1016/j.molp.2015.09.005

Jackson A. E., Seppelt R. D. The accumulation of proline in Prasiola crispa during winter in Antarctica. Physiologia Plantarum, 1995, vol. 94, iss. 1, pp. 25–30. https://doi.org/10.1111/j.1399-3054.1995.tb00779.x

Kakinuma M., Coury D. A., Kuno Y., Itoh S., Kozawa Y., Inagaki E., Yoshiura Y., Amano H. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology, 2006, vol. 149, pp. 97–106. https://doi.org/10.1007/s00227-005-0215-y

Kaul S., Sharma S. S., Mehta I. K. Free radical scavenging potential of L-proline: Evidence from in vitro assays. Amino Acids, 2008, vol. 34, iss. 2, pp. 315–320. https://doi.org/10.1007/s00726-006-0407-x

Khaleafa A. F., Mohsen A. F., Shaalan S. H. Seasonal variations in the growth and amino acid pattern of Caulerpa prolifera (Foerskal) Lamouroux. Hydrobiological Bulletin, 1982, vol. 16, iss. 2–3, pp. 201–206. https://doi.org/10.1007/BF02255373

Klindukh M. P., Obluchinskaya E. D., Matishov G. G. Seasonal changes in the mannitol and proline contents of the brown alga Fucus vesiculosus L. on the Murman coast of the Barents Sea. Doklady Biological Sciences, 2011, vol. 441, pp. 373–376. https://doi.org/10.1134/s0012496611060032

Klindukh M. P., Obluchinskaya E. D. A comparative study of free amino acids of the brown alga Fucus vesiculosus Linnaeus, 1753 from the intertidal zone of the Murman shore, Barents Sea. Russian Journal of Marine Biology, 2018, vol. 44, iss. 3, pp. 232–239. https://doi.org/10.1134/S1063074018030069

Kumar M., Kumari P., Gupta V., Reddy C. R. K., Jha B. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. Journal of Experimental Marine Biology and Ecology, 2010, vol. 391, iss. 1–2, pp. 27–34. https://doi.org/10.1016/j.jembe.2010.06.001

Lam H. M., Hsieh M. H., Coruzzi G. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant Journal, 1998, vol. 16, iss. 3, pp. 345–353. https://doi.org/10.1046/j.1365-313x.1998.00302.x

Lüning K., Schmitz K., Willenbrink J. CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Marine Biology, 1973, vol. 23, iss. 4, pp. 275–281. https://doi.org/10.1007/BF00389334

Maehre H. K., Malde M. K., Eilertsen K. E., Elvevoll E. O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food and Agriculture, 2014, vol. 94, iss. 15, pp. 3281–3290. https://doi.org/10.1002/jsfa.6681

Makarov V. N., Schoschina E. V., Lüning K. Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. I. Juvenile sporophytes of Laminariales (Phaeophyta). European Journal of Phycology, 1995, vol. 30, iss. 4, pp. 261–270. https://doi.org/10.1080/09670269500651031

Makarov M. V., Ryzhik I. V., Voskoboinikov G. M., Matishov G. G. The effect of Fucus vesiculosus L. location in the depth on its morphophysiological parameters in the Barents Sea. Doklady Biological Sciences, 2010, vol. 430, iss. 1, pp. 39–41. https://doi.org/10.1134/S0012496610010138

Matysik J., Alia, Bhalu B., Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 2002, vol. 82, no. 5, pp. 525–532.

Mohsen A. F., Nasr A. H., Metwalli A. M. Effect of different light intensities on growth, reproduction, amino acid synthesis, fat and sugar contents in Ulva fasciata Delile. Hydrobiologia, 1973, vol. 43, iss. 1–2, pp. 125–135. https://doi.org/10.1007/BF00014261

Mohsen A. F., Kharboush A. M., Khaleafa A. F., Metwalli A., Azab Y. Amino acid pattern and seasonal variation in some marine algae from Alexandria. Botanica Marina, 1975, vol. 18, iss. 3, pp. 167–178. https://doi.org/10.1515/botm.1975.18.3.167

Morgan K. C., Wright J. L. C., Simpson F. J. Review of chemical constituents of the red alga Palmaria palmata (dulse). Economic Botany, 1980, vol. 34, iss. 1, pp. 27–50. https://doi.org/10.1007/BF02859553

Mouritsen O. G., Duelund L., Petersen M. A., Hartmann A. L., Frøst M. B. Umami taste, free amino acid composition, and volatile compounds of brown seaweeds. Journal of Applied Phycology, 2019, vol. 31, iss. 2, pp. 1213–1232. https://doi.org/10.1007/s10811-018-1632-x

Munda I. M., Garrasi C. Salinity-induced changes of nitrogenous constituents in Fucus vesiculosus (Phaeophyceae). Aquatic Botany, 1978, vol. 4, pp. 347–351. https://doi.org/10.1016/0304-3770(78)90031-1

Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, vol. 167, iss. 3, pp. 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x

Naidu B. P., Paleg L. G., Aspinall D., Jennings A. C., Jones G. P. Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry, 1991, vol. 30, iss. 2, pp. 407–409. https://doi.org/10.1016/0031-9422(91)83693-F

Nagahisa E., Kanno N., Sato M., Sato Y. Variations in D-aspartate content with season and part of Hizikia fusiformis. Fisheries Science, 1994, vol. 60, iss. 6, pp. 777–779. https://doi.org/10.2331/fishsci.60.777

Naldi M., Wheeler P. A. Changes in nitrogen pools in Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. Journal of Phycology, 1999, vol. 35, iss. 1, pp. 70–77. https://doi.org/10.1046/j.1529-8817.1999.3510070.x

Nygard C. A., Dring M. J. Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish seas. European Journal of Phycology, 2008, vol. 43, iss. 3, pp. 253–262. https://doi.org/10.1080/09670260802172627

Obluchinskaya E. D., Voskoboinikov G. M., Galynkin V. A. Contents of alginic acid and fucoidan in Fucus algae of the Barents Sea. Applied Biochemistry and Microbiology, 2002, vol. 38, pp. 186–188. https://doi.org/10.1023/A:1014374903448

Oliveira I. C., Coruzzi G. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiology, 1999, vol. 221, iss. 1, pp. 301–309. https://doi.org/10.1104/pp.121.1.301

Park C. S., Park K. Y., Hwang E. K., Kakinuma M. Effects of deep seawater medium on growth and amino acid profile of a sterile Ulva pertusa Kjellman (Ulvaceae, Chlorophyta). Journal of Applied Phycology, 2013, vol. 25, iss. 3, pp. 781–786. https://doi.org/10.1007/s10811-013-9985-7

Parthasarathy A., Cross P. J., Dobson R. C., Adams L. E., Savka M. A., Hudson A. O. A three-ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences, 2018, vol. 5, art. no. 29 (30 p.). https://doi.org/10.3389/fmolb.2018.00029

Peinado I., Giron J., Koutsidis G., Ames J. M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 2014, vol. 66, pp. 36–44. https://doi.org/10.1016/j.foodres.2014.08.035

Rani G. Changes in protein profile and amino acids in Cladophora vagabunda (Chlorophyceae) in response to salinity stress. Journal of Applied Phycology, 2007, vol. 19, pp. 803–807. https://doi.org/10.1007/s10811-007-9211-6

Rhodes D., Hanson A. D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, vol. 44, pp. 357–384. https://doi.org/10.1146/annurev.pp.44.060193.002041

Ryzhik I. V. Seasonal variations in the metabolic activity of cells of Fucus vesiculosus Linnaeus, 1753 (Phaeophyta: Fucales) from the Barents Sea. Russian Journal of Marine Biology, 2016, vol. 42, pp. 433–436. https://doi.org/10.1134/S1063074016050102

Ryzhik I. V., Kosobryukhov A. A., Markovskaya E. F., Makarov M. V. Photosynthetic capacity of Fucus vesiculosus Linnaeus, 1753 (Phaeophyta: Fucales) in the Barents Sea during the tidal cycle. Biology Bulletin, 2021, vol. 48, pp. 48–56. https://doi.org/10.1134/S1062359020060114

Saradhi P. P., AliaArora S., Prasad K. V. S. K. Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and Biophysical Research Communications, 1995, vol. 209, iss. 1, pp. 1–5. https://doi.org/10.1006/bbrc.1995.1461

Schmitz K., Lüning K., Willenbrink J. CO2-Fixierung und Stofftransport in benthischen marinen Algen. II. Zum Ferntransport 14C-markierter assimilate bei Laminaria hyperborea und Laminaria saccharina. Zeitschrift für Pflanzenphysiologie, 1972, vol. 67, iss. 5, pp. 418–429. https://doi.org/10.1016/S0044-328X(72)80042-4

Schmitz K., Srivastava L. M. Long distance transport in Macrocystis integrifolia. I. Translocation of 14C-labelled assimilates. Plant Physiology, 1979, vol. 63, iss. 6, pp. 995–1022. https://doi.org/10.1104/pp.63.6.995

Stewart G. R., Larher F. Accumulation of amino acids and related compounds in relation to environmental stress. In: The Biochemistry of Plants: A Comprehensive Treatise. Vol. 5. Amino Acids and Derivatives / B. J. Miflin (Ed.). New York ; London : Academic Press, 1980, pp. 609–635. https://doi.org/10.1016/b978-0-12-675405-6.50023-1

Surget G., Le Lann K., Delebecq G., Kervarec N., Donval A., Poullaouec M.-A., Bihannic I., Poupart N., Stiger-Pouvreau V. Seasonal phenology and metabolomics of the introduced red macroalga Gracilaria vermiculophylla, monitored in the Bay of Brest (France). Journal of Applied Phycology, 2017, vol. 29, pp. 2651–2666. https://doi.org/10.1007/s10811-017-1060-3

Tropin I. V., Radzinskaya N. V., Voskoboinikov G. M. The influence of salinity on the rate of dark respiration and structure of the cells of brown algae thalli from the Barents Sea littoral. Biology Bulletin, 2003, vol. 30, no. 1, pp. 40–47. https://doi.org/10.1023/A:1022063426675

Trovato M., Mattioli R., Costantino P. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 2008, vol. 19, pp. 325–346. https://doi.org/10.1007/s12210-008-0022-8

Wang Q., Dong S., Tian X., Wang F. Effects of circadian rhythms of fluctuating temperature on growth and biochemical composition of Ulva pertusa. Hydrobiologia, 2007, vol. 586, pp. 313–319. https://doi.org/10.1007/s10750-007-0700-z

Wang W., Chen T., Xu Y., Xu K., Ji D., Chen C., Xie C. Investigating the mechanisms underlying the hyposaline tolerance of intertidal seaweed, Pyropia haitanensis. Algal Research, 2020, vol. 47, art. no. 101886 (12 p.). https://doi.org/10.1016/j.algal.2020.101886

Zrenner R., Stitt M., Sonnewald U., Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annual Review of Plant Biology, 2006, vol. 57, pp. 805–836. https://doi.org/10.1146/annurev.arplant.57.032905.105421

Statistics

Downloads

Download data is not yet available.