Growth dynamics of the benthic diatom Ardissonea crystallina (C. Agardh) Grunow, 1880 (Bacillariophyta) under copper ions effect
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
Increasing anthropogenic load on coastal ecosystems of the Black Sea determines the need for regular assessing the state of planktonic and benthic communities. Planktonic microalgae contributing up to 20–25 % of global primary production are traditionally used as test objects; however, the contribution of microphytobenthos is comparable to that of phytoplankton. Benthic diatoms are close-associated with bottom substrate, and most of them are highly sensitive to the effect of technogenic pollutants accumulating in sediments. The changes in physiological indicators of benthic Bacillariophyta may objectively reflect the negative effect of various toxicants; accordingly, benthic diatoms can be used as test objects in the indirect assessment of the marine environment quality. We aimed to study the growth dynamics of abundance of clonal strain cells for a new biotesting object – the diatom Ardissonea crystallina (C. Agardh) Grunow, 1880 (Bacillariophyta) – under the effect of various CuSO4·5H2O concentrations during 10-day laboratory experiments. This species is widespread in the Black Sea sublittoral and highly sensitive to the effect of different technogenic pollutants, inter alia heavy metals. As shown, at copper ions concentrations of 32–128 μg·L−1, A. crystallina growth dynamics generally corresponds to the dose–response curve in a toxicological experiment. The correlation was found between a decrease in intensity of the culture growth and increase in toxicant concentration in the experimental medium. At copper ions concentration of 256–320 μg·L−1, the ratio of alive cells in the clonal strain decreases gradually from 62–66 % (the 1st day) to 34–37 % (the 10th day); the indicators of an increase in cell abundance in the clonal strain are characterized by a negative trend – from −0.01 (on the 2nd day) to −0.34 (on the 10th day). At Cu2+ concentrations of 384 μg·L−1 and higher, drastic inhibition and subsequent death of A. crystallina cells were revealed. At 448–1,024 μg·L−1, complete cell mortality was registered already on the 3rd day of the experiment. Statistical comparison of the ratio variability of A. crystallina alive cells and the specific growth in their abundance for the control and Cu2+ concentrations of 64–128 μg·L−1 showed as follows: at 32–128 μg·L−1, the differences between the mean values of the test indicators were significant (P = 0.002…0.020). At 256 μg·L−1, the changes in total abundance and alive cells ratio in the test culture significantly differ (P = 0.002…0.014) from those both at lower and higher copper concentrations. This fact allows to consider the toxicant level of 256 μg·L−1 as a critical one for A. crystallina: its exceeding will result in a sharp increase in cell mortality. Based on the results obtained, this benthic diatom can be recommended for use as a suitable test object in toxicological experiments, as well as for monitoring and indirect environmental assessment of coastal water areas subjected to technogenic pollution.
Authors
References
Айздайчер Н. А., Реунова Ю. А. Влияние детергентов на рост диатомовой водоросли Thalassiosira pseudonana в культуре // Биология моря. 2002. Т. 28, № 5. С. 362–365. [Aizdaicher N. A., Reunova Yu. A. The effect of detergents on growth of the diatom Thalassiosira pseudonana in culture. Biologiya morya, 2002, vol. 28, no. 5, pp. 362–365. (in Russ.)]
Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей : учебное пособие. Уфа : Изд-во БГПУ, 2008. 152 с. [Gaisina L. A., Fazlutdinova A. I., Kabirov R. R. Sovremennye metody vydeleniya i kul’tivirovaniya vodoroslei : uchebnoe posobie. Ufa : Izd-vo BGPU, 2008, 152 p. (in Russ.)]
Гелашвили Д. Б., Безель В. С., Романова Е. Б., Безруков М. Е., Силкин А. А., Нижегородцев А. А. Принципы и методы экологической токсикологии. Нижний Новгород : Нижегородский госуниверситет, 2015. 142 с. [Gelashvili D. B., Bezel V. S., Romanova E. B., Bezrukov M. E., Silkin A. A., Nizhegorodtsev A. A. Printsipy i metody ekologicheskoi toksikologii. Nizhnii Novgorod : Nizhegorodskii gosuniversitet, 2015, 742 p. (in Russ.)]
Гусляков Н. Е., Закордонец О. А., Герасимюк В. П. Атлас диатомовых водорослей бентоса северо-западной части Чёрного моря и прилегающих водоёмов. Киев : Наукова думка, 1992. 115 с. [Guslyakov N. E., Zakordonets O. A., Gerasimyuk V. P. Atlas diatomovykh vodoroslei bentosa severo-zapadnoi chasti Chernogo morya i prilegayushchikh vodoemov. Kyiv : Naukova dumka, 1992, 115 p. (in Russ.)]
Маркина Ж. В. Действие детергентов и поверхностно-активных веществ на рост, физиологические и биохимические показатели одноклеточных водорослей (обзор) // Известия ТИНРО. 2009. Т. 156. С. 125–134. [Markina Zh. V. Influence of detergents and surface-active substances on unicellular algae growth, physiological and biochemical parameters (review). Izvestiya TINRO, 2009, vol. 156, pp. 125–134. (in Russ.)]
Маркина Ж. В., Айздайчер Н. А. Влияние детергентов на динамику численности и физиологическое состояние бентосной микроводоросли Attheya ussurensis (Bacillariophyta) в культуре // Биология моря. 2007. Т. 33, № 6. С. 432–439. [Markina Zh. V., Aizdaicher N. A. The influence of detergents on the abundance dynamics and physiological state of the benthic microalgae Attheya ussurensis (Bacillariophyta) in laboratory culture. Biologiya morya, 2007, vol. 33, no. 6, pp. 432–439. (in Russ.)]
Маркина Ж. В., Айздайчер Н. А. Оценка качества вод Амурского залива Японского моря на основе биотестирования с применением одноклеточной водоросли Pheodactylum tricornutum Bohlin // Сибирский экологический журнал. 2011. Т. 18, № 1. С. 99–105. [Markina Zh. V., Aizdaicher N. A. Phaeodactylum tricornutum Bohlin bioassay of water quality of Amur Bay (the Sea of Japan). Contemporary Problems of Ecology, 2011, vol. 4, no. 1, pp. 74–79. (in Russ.)]. https://doi.org/10.1134/S1995425511010127
Маркина Ж. В., Айздайчер А. Н. Влияние меди на численность, морфологию клеток и содержание фотосинтетических пигментов микроводоросли Porphyridium purpureum // Морской биологический журнал. 2019. Т. 4, № 4. С. 34–40. [Markina Zh. V., Aizdaicher N. A. The effect of copper on the abundance, cell morphology and content of photosynthetic pigments in the microalga Porphyridium purpureum. Morskoj biologicheskij zhurnal, 2019, vol. 4, no. 4, pp. 34–40. (in Russ.)]. https://doi.org/10.21072/mbj.2019.04.4.03
Неврова Е. Л. Бентосные диатомовые водоросли (Bacillariophyta) Чёрного моря: разнообразие и структура таксоценов различных биотопов : дис. … д-ра биол. наук. Москва, 2015. 445 с. [Nevrova E. L. Bentosnye diatomovye vodorosli (Bacillariophyta) Chernogo morya: raznoobrazie i struktura taksotsenov razlichnykh biotopov. [dissertation]. Moscow, 2015, 445 p. (in Russ.)]. https://dlib.rsl.ru/01005555099
Неврова Е. Л., Снигирева А. А., Петров А. Н., Ковалева Г. В. Руководство по изучению морского микрофитобентоса и его применению для контроля качества среды / под ред. А. В. Гаевской. Севастополь ; Симферополь : Н.Оріанда, 2015. 176 с. [Nevrova E. L., Snigireva A. A., Petrov A. N., Kovaleva G. V. Guidelines From Quality Control of the Black Sea. Microphytobenthos / A. V. Gaevskaya (Ed.). Sevastopol ; Simferopol : N.Orianda, 2015, 176 p. (in Russ.)]. https://doi.org/10.21072/978-5-9907290-2-5
Овсяный Е. И., Романов А. С., Игнатьева О. Г. Распределение тяжёлых металлов в поверхностном слое донных осадков Севастопольской бухты (Чёрное море). Морской экологический журнал. 2003. Т. 2, № 2. С. 85–101. [Ovsyaniy E. I., Romanov A. S., Ignatieva O. G. Distribution of heavy metals in superficial layer of bottom sediments of Sevastopol Bay (the Black Sea). Morskoj ekologicheskij zhurnal, 2003, vol. 2, no. 2, pp. 85–101. (in Russ.)]. https://repository.marine-research.ru/handle/299011/710
Петров А. Н., Неврова Е. Л. Влияние антропогенного пресса на структуру таксоцена диатомовых водорослей (на примере Севастопольской бухты) // Современное состояние биоразнообразия прибрежных вод Крыма (Черноморский сектор) / под ред. В. Н. Еремеева, А. В. Гаевской. Севастополь : ЭКОСИ-Гидрофизика, 2003. С. 288–302. [Petrov A. N., Nevrova E. L. Anthropogenic press on the diatom algae taxocene structure (Sevastopol Bay as an example). In: Modern Condition of Biological Diversity in Near-shore Zone of Crimea (the Black Sea Sector) / V. N. Eremeev, A. V. Gaevskaya (Eds). Sevastopol : EKOSI-Gidrofizika, 2003, pp. 288–302. (in Russ.)]. https://doi.org/10.21072/966-02-3133-4
Петров А. Н., Неврова Е. Л. Сравнительный анализ структуры таксоцена донных диатомовых (Bacillariophyta) в районах с различным уровнем техногенного загрязнения (Чёрное море, Крым) // Морской экологический журнал. 2004. Т. 3, № 2. С. 72–83. [Petrov A. N., Nevrova E. L. Comparative analysis of taxocene structures of benthic diatoms (Bacillariophyta) in regions with different level of technogenic pollution (the Black Sea, Crimea). Morskoj ekologicheskij zhurnal, 2004, vol. 3, no. 2, pp. 72–83. (in Russ.)]. https://repository.marine-research.ru/handle/299011/748
Петров А. Н., Неврова Е. Л., Малахова Л. В. Многомерный анализ распределения бентосных диатомовых (Bacillariophyta) в поле градиентов абиотических факторов в Севастопольской бухте (Чёрное море, Крым) // Морской экологический журнал. 2005. Т. 4, № 3. С. 65–77. [Petrov A. N., Nevrova E. L., Malakhova L. V. Multivariate analysis of benthic diatoms distribution across the multidimensional space of the environmental factors gradient in Sevastopol Bay (the Black Sea, Crimea). Morskoj ekologicheskij zhurnal, 2005, vol. 4, no. 3, pp. 65–77. (in Russ.)]. https://repository.marine-research.ru/handle/299011/812
Петров А. Н., Неврова Е. Л. Оценка неоднородности распределения клеток при токсикологических экспериментах с клоновыми культурами бентосных диатомовых водорослей // Морской биологический журнал. 2020. Т. 5, № 2. С. 76–87. [Petrov A. N., Nevrova E. L. Estimation of cell distribution heterogeneity at toxicological experiments with clonal cultures of benthic diatoms. Morskoj biologicheskij zhurnal, 2020, vol. 5, no. 2, pp. 76–87. (in Russ.)]. https://doi.org/10.21072/mbj.2020.05.2.07
Романова Д. Ю., Петров А. Н., Неврова Е. Л. Действие сульфата меди на рост и морфологию клеток клоновых культур четырёх видов бентосных диатомовых водорослей (Bacillariophyta) Чёрного моря // Морской биологический журнал. 2017. Т. 2, № 3. С. 53–67. [Romanova D. Yu., Petrov A. N., Nevrova E. L. Copper sulphate impact on growth and cell morphology of clonal strains of four benthic diatom species (Bacillariophyta) from the Black Sea. Morskoj biologicheskij zhurnal, 2017, vol. 2, no. 3, pp. 53–67. (in Russ.)]. https://doi.org/10.21072/mbj.2017.02.3.05
Спиркина Н. Е., Ипатова В. И., Дмитриева А. Г., Филенко О. Ф. Сравнительная динамика роста культур микроводорослей видов Monoraphidium arcuatum (Korsch.) Hind. и Scenedesmus quadricauda (Turp.) Bréb. // Бюллетень Московского общества испытателей природы. Отдел биологический. 2014. Т. 119, вып. 2. С. 64–69. [Spirkina N. E., Ipatova V. I., Dmitrieva A. G., Filenko O. F. Comparative growth of microalgae cultures of species Monoraphidium arcuatum (Korsch.) Hind. and Scenedesmus quadricauda (Turp.) Bréb. Bulletin of Moscow Society of Naturalists. Biological Series, 2014, vol. 119, iss. 2, pp. 64–69. (in Russ.)]
Филенко О. Ф., Марушкина Е. В., Дмитриева А. Г. Оценка воздействия меди на модельную популяцию водоросли Scenedesmus quadricauda (Turp.) Bréb. методом микрокультур // Гидробиологический журнал. 2006. Т. 42, № 6. С. 53–61. [Filenko O. F., Marushkina E. V., Dmitrieva A. G. Assessment of impact of cooper on a model population of alga Scenedesmus quadricauda (Turp.) Bréb. by a microculture method. Gidrobiologicheskii zhurnal, 2006, vol. 42, no. 6, pp. 53–61. (in Russ.)]
Шлегель Г. Общая микробиология : пер. с нем. Москва : Мир, 1987. 567 с. [Schlegel H. G. Allgemeine Mikrobiologie. Moscow : Mir, 1987, 567 p. (in Russ.)]
Эколого-токсикологические аспекты загрязнения морской среды. Т. 5 / под ред. С. А. Патина. Ленинград : Гидрометеоиздат, 1985. 116 с. [Ekologo-toksikologicheskie aspekty zagryazneniya morskoi sredy. Vol. 5 / S. A. Patin (Ed.). Leningrad : Gidrometeoizdat, 1985, 116 p. (in Russ.)]
Ahalya N., Ramachandra T. V., Kanamadi N. Biosorption of heavy metals. Research Journal of Chemical & Environmental Sciences, 2003, vol. 7, iss. 4, pp. 71–79.
Anantharaj K., Govindasamy C., Natanamurugaraj G., Jeyachandran S. Effect of heavy metals on marine diatom Amphora coffeaeformis (Agardh Kutz.). Global Journal of Environmental Research, 2011, vol. 5, no. 3, pp. 112–117.
Andersen R. A., Berges J. A., Harrison P. J., Watanabe M. M. Recipes for freshwater and seawater media. In: Algal Culturing Techniques / R. A. Andersen (Ed.). Amsterdam ; Boston ; London : Elsevier Academic Press, 2005, pp. 429–538.
Burgess R. M., Terletskaya A. V., Milyukin M. V., Povolotskii M. I., Demchenko V. Y., Bogoslovskaya T. A., Topkin Yu. V., Vorobyova T. V., Petrov A. N., Lyashenko A. V., Ho K. T. Concentration and distribution of hydrophobic organic contaminants and metals in the estuaries of Ukraine. Marine Pollution Bulletin, 2009, vol. 58, no. 8, pp. 1103–1115. https://doi.org/10.1016/j.marpolbul.2009.04.013
Cid A., Herrero C., Torres E., Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: Effects on photosynthesis and related parameters. Aquatic Toxicology, 1995, vol. 31, iss. 2, pp. 165–174. https://doi.org/10.1016/0166-445X(94)00071-W
Crespo E., Losano P., Blasco J., Moreno-Garrido I. Effect of copper, irgarol and atrazine on epiphytes attached to artificial devices for coastal ecotoxicology bioassays. Bulletin of Environmental Contamination and Toxicology, 2013, vol. 91, iss. 6, pp. 656–660. https://doi.org/10.1007/s00128-013-1122-4
Davidovich N. A., Davidovich O. I., Podunay Yu. A., Gastineau R., Kaczmarska I., Poulíčková A., Witkowski A. Ardissonea crystallina has a type of sexual reproduction that is unusual for centric diatoms. Scientific Reports, 2017, vol. 7, art. no. 14670 (16 p.). https://doi.org/10.1038/s41598-017-15301-z
Diatoms: Fundamentals and Applications / J. Seckbach, R. Gordon (Eds). Hoboken, New Jersey : Wiley ; Salem, Massachusetts : Scrivener, 2019, 679 p.
Florence T. M., Stauber J. L. Toxicity of copper complexes to the marine diatom Nitzschia closterium. Aquatic Toxicology, 1986, vol. 8, iss. 1, pp. 11–26. https://doi.org/10.1016/0166-445X(86)90069-X
Kim J. W., Price N. M. The influence of light on copper-limited growth of an oceanic diatom, Thalassiosira oceanica (Coscinodiscophyceae). Journal of Phycology, 2017, vol. 53, iss. 5, pp. 938–950. https://doi.org/10.1111/jpy.12563
Kiseleva A. A., Tarachovskaya E. R., Shishova M. F. Biosynthesis of phytohormones in algae. Russian Journal of Plant Physiology, 2012, vol. 59, iss. 5, pp. 595–610. http://doi.org/10.1134/S1021443712050081
Kumar S., Baweja P., Sahoo D. Diatoms: Yellow or golden brown algae. In: The Algae World / D. Sahoo, J. Seckbach (Eds). Dordrecht, Netherlands : Springer, 2015, pp. 235–258. (Book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ; vol. 26). http://dx.doi.org/10.1007/978-94-017-7321-8_8
Leung P. T. Y., Yi A. X., Ip J. C. H., Mak S. S. T., Leung K. M. Y. Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. Marine Pollution Bulletin, 2017, vol. 124, iss. 2, pp. 938–945. http://doi.org/10.1016/j.marpolbul.2017.03.038
Lobban C. S., Ashworth M. P., Camacho T., Lam D. W., Theriot E. C. Revision of Ardissoneaceae (Bacillariophyta, Mediophyceae) from Micronesian populations, with descriptions of two new genera, Ardissoneopsis and Grunowago, and new species in Ardissonea, Synedrosphenia and Climacosphenia. PhytoKeys, 2022, vol. 208, pp. 103–184. https://doi.org/10.3897/phytokeys.208.89913
Markina Zh. V., Aizdaicher N. A. Content of photosynthetic pigments, growth, and cell size of microalga Phaeodactylum tricornutum in the copper-polluted environment. Russian Journal of Plant Physiology, 2006, vol. 53, no. 3, pp. 305–309. https://doi.org/10.1134/S1021443706030034
Miazek K., Iwanek W., Remacle C., Richel A., Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial products biosynthesis: A review. International Journal of Molecular Sciences, 2015, vol. 16, iss. 10, pp. 23929–23969. https://doi.org/10.3390/ijms161023929
Nagajoti P. C., Lee K. D., Sreekanth T. V. M. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 2010, vol. 8, iss. 3, pp. 199–216. http://doi.org/10.1007/s10311-010-0297-8
Rijstenbil J. W., Gerringa L. J. A. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquatic Toxicology, 2002, vol. 56, no. 2, pp. 115–131. https://doi.org/10.1016/s0166-445x(01)00188-6
Round F. E., Crawford R. M., Mann D. G. The Diatoms. Biology and Morphology of the Genera. Cambridge : Cambridge University Press, 1990, 747 p.
SigmaPlot NG. USA : [site]. 2021. https://sigmaplot.com [accessed: 15.01.2021].
Smolyakov B. S., Ryzhikh A. P., Romanov R. E. The fate of Cu, Zn, and Cd in the initial stage of water system contamination: The effect of phytoplankton activity. Journal of Hazardous Materials, 2010, vol. 184, iss. 1–3, pp. 819–825. https://doi.org/10.1016/j.jhazmat.2010.08.115
The Diatom World / J. Seckbach, J. P. Kociolek (Eds). Berlin ; Heidelberg ; New York : Springer Verlag, 2011, 533 p. (Book series : Cellular Origin, Life in Extreme Habitats and Astrobiology ; vol. 19). https://doi.org/10.1007/978-94-007-1327-7
Witkowski A., Lange-Bertalot H., Metzeltin D. Diatom Flora of Marine Coasts. 1. Rugell ; Königstein : Gantner Verlag : Koeltz Scientific Books, 2000, 925 p. (Iconographia Diatomologica : Annotated Diatom Micrographs ; vol. 7: Diversity-Taxonomy-Identification / H. Lange-Bertalot (Ed.)).
Yan J., Liu J., Li Y., Lang S. Effect of water current on the distribution of polycyclic aromatic hydrocarbons, heavy metals and benthic diatom community in sediments of Haihe estuary, China. Environmental Science and Pollution Research, 2014, vol. 21, no. 20, pp. 12050–12061. https://doi.org/10.1007/s11356-014-3145-8