Kovalev N. N., Leskova S. E., Mikheev E. V. Growth of Isochrysis galbana Parke, 1949 (Haptophyta) under mixotrophic conditions using salicylic acid. Marine Biological Journal, 2023, vol. 8, no. 1, pp. 56-63. https://doi.org/10.21072/mbj.2023.08.1.05



The effect of salicylic acid at different concentrations on growth dynamics of Isochrysis galbana Parke, 1949 in the batch culture was estimated. The cultivation was carried out in monoculture. The rise in algal biomass was evaluated by an increase in cell abundance (cells were counted in each experiment in the Goryaev chamber in triplicate under a light microscope). The experiments lasted for 7 days. As found, salicylic acid at concentrations from 2.8 × 10−7 to 5.6 × 10−7 mol·L−1 had a stimulating effect on the growth dynamics of I. galbana cells, compared with the control group. The maximum cell growth in culture was recorded with the addition of 2.8 × 10−7 mol·L−1 of salicylic acid, and the specific growth rate at a given concentration on the 7th day of the experiment was 1.2 times higher than in the control group. Biochemical parameters of I. galbana culture with salicylic acid added (2.8 × 10−7 mol·L−1) during 7 days of the experiment were estimated in comparison with parameters of the control group. In the experimental group, the maximum protein content was noted on the 7th day of the experiment. A rise was 76.9% compared to the initial value. As shown, the maximum increase in the content of lipids and carbohydrates in the experimental group occurred on the 5th day. A rise in the values of these indicators was 41.7 and 87%, respectively. Chlorophyll content increased throughout the entire experiment both in the control and experimental groups, and the highest value was registered for the experimental group.


N. N. Kovalev
chief researcher, D. Sc.



S. E. Leskova
associate professor, PhD



E. V. Mikheev
senior researcher, PhD




Ковалев Н. Н., Лескова С. Е., Михеев Е. В., Позднякова Ю. М., Есипенко Р. В. Влияние салициловой кислоты на продукционные характеристики и биохимические показатели Tetraselmis suecica в накопительной культуре // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2021. № 1. С. 90–99. [Kovalev N. N., Leskova S. E., Mikheev E. V., Pozdnyakova Yu. M., Esipenko R. V. Influence of salicylic acid on production characteristics and biochemical parameters of Tetraselmis suecica in enrichment culture. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Rybnoe khozyaistvo, 2021, no. 1, pp. 90–99. (in Russ.)]. https://doi.org/10.24143/2073-5529-2021-1-90-99

Романенко Е. А., Косаковская И. В., Романенко П. А. Фитогормоны микроводорослей: биологическая роль и участие в регуляции физиологических процессов. Ч. II. Цитокинины и гиббереллины // Альгология. 2016. Т. 26, № 2. С. 203–229. [Romanenko E. A., Kosakovskaya I. V., Romanenko P. A. Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes. Pt. II. Cytokinins and gibberellins. Algologiya, 2016, vol. 26, no. 2, pp. 203–229. (in Russ.)]. https://doi.org/10.1615/InterJAlgae.v18.i2.70

Табельская А. С., Калинина М. В. Рост и выживаемость заводских личинок тихоокеанской устрицы Crassostrea gigas при различных концентрациях микроводорослей и солёности в условиях южного Приморья // Известия ТИНРО. 2021. Т. 201, № 3. С. 723–731. [Tabelskaya A. S., Kalinina M. V. Growth and survival of the hatchery larvae of Pacific oyster Crassostrea gigas under different concentrations of microalgae and salinity in conditions of southern Primorye. Izvestiya TINRO, 2021, vol. 201, no. 3, pp. 723–731. (in Russ.)]. https://doi.org/10.26428/1606-9919-2021-201-723-734

Тренкешу Р. П., Лелеков А. С. Моделирование роста микроводорослей в культуре. Белгород : Константа, 2017. 152 с. [Trenkenshu R. P., Lelekov A. S. Modeling Growth of Microalgae in Culture. Belgorod : Constanta, 2017, 152 p. (in Russ.)]. URL: https://repository.marine-research.ru/handle/299011/2073

Alkhamis Y., Qin J. G. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed Research International, 2013, vol. 2013, art. no. 983465 (9 p). https://doi.org/10.1155/2013/983465

Aminot A., Ray F. Standard Procedure for the Determination of Chlorophyll a by Spectroscopic Methods. Copenhagen, Denmark : International Council for the Exploration of the Sea, 2000, 17 p. (ICES Techniques in Marine Environmental Sciences).

Cañavate J.-P., Hachero-Cruzado I., Pérez-Gavilán C., Fernández-Díaz C. Lipid dynamics and nutritional value of the estuarine strain Isochrysis galbana VLP grown from hypo to hyper salinity. Journal of Applied Phycology, 2020, vol. 32, iss. 6, pp. 3749–3766. https://doi.org/10.1007/s10811-020-02258-2

Carneiro M., Pôjo V., Malcata F. X., Otero A. Lipid accumulation in selected Tetraselmis strains. Journal of Applied Phycology, 2019, vol. 31, iss. 5, pp. 2845–2853. https://doi.org/10.1007/s10811-019-01807-8

Danesh A., Zilouei H., Farhadian O. The effect of glycerol and carbonate on the growth and lipid production of Isochrysis galbana under different cultivation modes. Journal of Applied Phycology, 2019, vol. 31, iss. 6, pp. 3411–3420. https://doi.org/10.1007/s10811-019-01888-5

Guillard R. R. L. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals / M. L. Smith, M. H. Chanley (Eds). New York ; London : Plenum Press, 1975, pp. 29–60. https://doi.org/10.1007/978-1-4615-8714-9_3

Herbert D., Phipps P. J., Strange R. E. Chemical analysis of microbial cells. In: Methods in Microbiology / J. R. Norris, D. W. Ribbons (Eds). London ; New York : Academic Press, 1971, vol. 5, pt. B, chap. 3, pp. 209–344. http://dx.doi.org/10.1016/S0580-9517(08)70641-X

Johnson K. R., Ellis G., Toothill C. The sulfophosphovanillin reaction for serum lipids: A reappraisal. Clinical Chemistry, 1977, vol. 23, iss. 9, pp. 1669–1678. https://doi.org/10.1093/CLINCHEM%2F23.9.1669

Laurens L. M. L., Dempster T. A., Jones H. D. T., Wolfrum E. J., Van Wychen S., McAllister J. S. P., Rencenberger M., Parchert K. J., Gloe L. M. Algal biomass constituent analysis: Method uncertainties and investigation of the underlying measuring chemistries. Analytical Chemistry, 2012, vol. 84, iss. 4, pp. 1879–1887. https://doi.org/10.1021/ac202668c

Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, iss. 1, pp. 265–275. http://doi.org/10.1016/s0021-9258(19)52451-6

Madani N. S. H., Hosseini Shekarabi S. P., Mehrgan M. S., Pourang N. Can 2, 4-dichlorophenoxyacetic acid alter growth performance, biochemical composition, and fatty acid profile of the marine microalga Isochrysis galbana? Phycologia, 2020, vol. 59, iss. 6, pp. 598–605. https://doi.org/10.1080/00318884.2020.1827826

Madani N. S. H., Shamsaie Mehrgan M., Hosseini Shekarabi S. P., Pourang N. Regulatory effect of gibberellic acid (GA3) on the biomass productivity and some metabolites of a marine microalga, Isochrysis galbana. Journal of Applied Phycology, 2021, vol. 33, iss. 1, pp. 255–262. https://doi.org/10.1007/s10811-020-02291-1

Priyadarshani I., Rath B. Commercial and industrial applications of microalgae – A review. Journal of Algal Biomass Utilization, 2012, vol. 3, no. 4, pp. 89–100.

Sánchez Á., Maceiras R., Cancela Á., Pérez A. Culture aspects of Isochrysis galbana for biodiesel production. Applied Energy, 2013, vol. 101, pp. 192–197. https://doi.org/10.1016/j.apenergy.2012.03.027

Shields R. J., Lupatsch I. Algae for aquaculture and animal feeds. Technikfolgenabschätzung – Theorie und Praxis, 2012, vol. 21, no. 1, pp. 23–37.

Tzovenis I., De Pauw N., Sorgeloos P. Effect of different light regimes on the docosahexaenoic acid (DHA) content of Isochrysis aff. galbana (clone T-ISO). Aquaculture International, 1997, vol. 5, iss. 6, pp. 489–507. https://doi.org/10.1023/A:1018349131522

Valenzuela-Espinoza E., Millán-Núñez R., Núñez-Cebrero F. Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacultural Engineering, 2002, vol. 25, iss. 4, pp. 207–216. https://doi.org/10.1016/S0144-8609(01)00084-X

Van Bergeijk S. A., Salas-Leiton E., Cañavate J. P. Production of Isochrysis aff. galbana (T-Iso) in outdoor tubular photobioreactors. 7th European Workshop “Biotechnology of Microalgae”, June 11–13, 2007, Nuthetal, Germany. [S. l.] : [S. n.], 2007, pp. 68–72.


This work was carried out within the framework of the state research assignment No. 121031300015-5.



Download data is not yet available.