Specifics of sample preparation of Arthrospira (Spirulina) platensis culture in the study of associated microflora by flow cytometry and scanning electron microscopy
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
In biotechnological research, it is important to control quantitative characteristics of associated microflora in algal cultures. With the aim of more complete detection and detailed study of associated microflora in Arthrospira (Spirulina) platensis culture, we applied methods of physical and chemical preparation of samples and subsequent investigation of a suspension by flow cytometry after cell staining with SYBR Green I fluorochrome and scanning electron microscopy. As shown, optimal sample preparation options were exposure to a reagent (sodium pyrophosphate or methanol), suspension stirring, ultrasonic treatment, centrifugation, and additional washing procedures. A mean of (27.1 ± 3.9) % of “potential” cumulative bacterial abundance was initially extracted from a cyanobacterial culture. During the following three washes, abundance of microorganisms increased significantly and averaged (88.9 ± 6.3) % (paired t-test; p < 0.05). Further, abundance of microorganisms in the sediment remained insignificant, 6–11%, and could be neglected. As shown, bacterial abundance at different stages of A. platensis cultivation changed from 6.7×106 to 1.7×108 cells·mL−1. The morphological structure of associated microflora in A. platensis at the stationary phase was dominated by large rod-shaped cells (67.2%); the proportion of spiral forms was almost twice as low (30.2%); and spherical forms were even less common (2.6%). The mean bacterial cell volume was (0.16 ± 0.02) μm³, and biomass was 0.022–0.025 g·L−1. The values obtained for indicators of associated microflora are comparable to those provided in literature for A. platensis and other algal cultures. The proposed methods of treatment of A. platensis suspension boosted the efficiency of bacterial separation, facilitated removal of fragments of cyanobacterial trichomes, detritus, and other particles in samples, and provided an opportunity to study associated microflora by flow cytometry and scanning electron microscopy.
Authors
References
Борисова Е. В. Видовой состав бактерий, сопутствующих микроводорослям в культуре (обзор литературы) // Альгология. 1996. Т. 6, № 3. С. 303–313. [Borisova E. V. Species composition of bacteria attendant to microalgae in culture (literary review). Al’gologiya, 1996, vol. 6, no. 3, pp. 303–313. (in Russ.)]
Звягинцев Д. Г. Оценка количества микроорганизмов в почвах разных типов // Микроорганизмы в сельском хозяйстве : труды II Межвузовской научной конференции 1968 г. Москва : Издательство Московского университета, 1970. С. 227–229. [Zvyagintsev D. G. Otsenka kolichestva mikroorganizmov v pochvakh raznykh tipov. In: Mikroorganizmy v sel’skom khozyaistve : trudy II Mezhvuzovskoi nauchnoi konferentsii 1968 g. Moscow : Izdatel’stvo Moskovskogo universiteta, 1970, pp. 227–229. (in Russ.)]
Игнатенко М. Е., Немцева Н. В. Механизмы взаимодействия автотрофного и гетеротрофного компонентов в альгобактериальных сообществах // Бюллетень Оренбургского научного центра УрО РАН. 2012. № 3. С. 1–10. [Ignatenko M. E., Nemtseva N. V. Mechanisms of interaction of autotrophic and heterotrophic components in algobacterial communities. Byulleten’ Orenburgskogo nauchnogo tsentra UrO RAN, 2012, no. 3, pp. 1–10. (in Russ.)]
Каленик Т. К., Добрынина Е. В., Остапенко В. М., Тори Я., Хироми Ю. Исследование пигментов сине-зелёной водоросли спирулины платенсис для практического использования в технологиях кондитерских изделий // Вестник Воронежского государственного университета инженерных технологий. 2019. Т. 81, № 2. С. 170–176. [Kalenik T. K., Dobrynina E. V., Ostapenko V. M., Torii Y., Hiromi J. Research of pigments of blue-green algae Spirulina platensis for practical use in confectionery technology. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii, 2019, vol. 81, no. 2, pp. 170–176. (in Russ.)]. https://doi.org/10.20914/2310-1202-2019-2-170-176
Кублановская А. А. Микробные сообщества каротиногенной микроводоросли Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta) в природе и при культивировании : дис. … канд. биол. наук : 03.02.01. Москва, 2019. 130 с. [Kublanovskaya A. A. Mikrobnye soobshchestva karotinogennoi mikrovodorosli Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta) v prirode i pri kul’tivirovanii. [dissertation]. Moscow, 2019, 130 p. (in Russ.)]
Лабораторный практикум по общей микробиологии / В. В. Слизень, Е. Ю. Кирильчик, Ж. Г. Шабан и др. ; 5-е изд. Минск : БГМУ, 2020. 80 с. [Laboratory Workbook in General Microbiology / V. V. Slizen, E. Yu. Kirilchik, Zh. G. Shaban et al. ; 5th ed. Minsk : BGMU, 2020, 80 p. (in Russ.)]
Потапова Н. А., Королевская Т. В. К методике определения биомассы бактериальных клеток // Гидробиологический журнал. 1991. Т. 27, № 1. С. 83–88. [Potapova N. A., Korolevskaya T. V. On procedure to determine biomass of bacterial cells. Gidrobiologicheskii zhurnal, 1991, vol. 27, no. 1, pp. 83–88. (in Russ.)]
Пуговкин Д. В. Эпифитные бактериоценозы Fucus vesiculosus L. Баренцева моря и их роль в деградации нефтяных загрязнений : дис. … канд. биол. наук : 25.00.28. Мурманск, 2016, 138 с., 146 с. с прилож. [Pugovkin D. V. Epifitnye bakteriotsenozy Fucus vesiculosus L. Barentseva morya i ikh rol’ v degradatsii neftyanykh zagryaznenii. [dissertation]. Murmansk, 2016, 138 p., 146 p. with suppl. (in Russ.)]
Рауэн Т. В., Ханайченко А. Н., Муханов В. С. Влияние микроводорослей и их фильтратов на численность бактерий в среде выращивания камбалы калкана // Морской экологический журнал. 2011. Т. 10, № 3. С. 48–56. [Rauen T. V., Khanaichenko A. N., Mukhanov V. S. Effect of microalgae and their filtrates on bacterial abundance in the rearing environment of the Black Sea turbot. Morskoj ekologicheskij zhurnal, 2011, vol. 10, no. 3, pp. 48–56. (in Russ.)]. https://repository.marine-research.ru/handle/299011/1171
Романенко В. И., Добрынин Э. Г. Определение удельного веса сухих бактериальных клеток Pseudomonas denitrificans // Биология внутренних вод : информационный бюллетень. 1973. № 16. С. 6–8. [Romanenko V. I., Dobyinin E. G. Determination of specific gravity of dry bacterial cells of Pseudomonas denitrificans. Biologiya vnutrennikh vod : informatsionnyi byulleten’, 1973, no. 16, pp. 6–8. (in Russ.)]
Рылькова О. А., Поликарпов И. Г. Сезонная динамика и пространственное распределение структурных показателей бактериопланктонного сообщества бухты Севастопольская (Крым, Чёрное море) // Морской биологический журнал. 2021. Т. 6, № 1. С. 82–101. [Rylkova O. A., Polikarpov I. G. Seasonal dynamics and spatial distribution of structural indicators of the bacterioplankton community of the Sevastopol Bay (the Black Sea). Morskoj biologicheskij zhurnal, 2021, vol. 6, no. 1, pp. 82–101. (in Russ.)]. https://doi.org/10.21072/mbj.2021.06.1.07
Сажин А. Ф., Мицкевич И. Н., Поглазова М. Н. Изменение размеров клеток бактериопланктона при фиксации и окрашивании // Океанология. 1987. Т. 27, № 1. С. 142–145. [Sazhin A. F., Mitskevich I. N., Poglazova M. N. Effect of fixation and staining on bacterial cell size characteristics. Okeanologiya, 1987, vol. 27, no. 1, pp. 142–145. (in Russ.)]
Тархова Э. П. Микроорганизмы, сопутствующие Spirulina platensis в накопительной культуре // Экология моря. 2005. Т. 70. С. 49–52. [Tarhova E. P. Microorganisms associated with Spirulina platensis (Nordst.) in accumulated culture. Ekologiya morya, 2005, vol. 70, pp. 49–52. (in Russ.)]. https://repository.marine-research.ru/handle/299011/4705
Троицкий А. С., Сорокин Ю. И. К методике расчёта биомассы бактерий в водоёмах // Труды Института биологии внутренних вод. 1967. Вып. 15. С. 85–90. [Troitsky A. S., Sorokin Yu. I. K metodike rascheta biomassy bakterii v vodoemakh. Trudy Instituta biologii vnutrennikh vod, 1967, iss. 15, pp. 85–90. (in Russ.)]
Хадад Р. И., Багдасарян С. Н., Давидян Т. С., Африкян Э. К. Микроводоросль спирулина и её микрофлора // Биологический журнал Армении. 1990. Т. 43, № 3. С. 235–239. [Khadad R. I., Bagdasaryan S. N., Davidyan T. S., Afrikyan E. K. Mikrovodorosl’ spirulina i ee mikroflora. Biologicheskii zhurnal Armenii, 1990, vol. 43, no. 3, pp. 235–239. (in Russ.)]. https://arar.sci.am/publication/258206
Шлегель Г. Общая микробиология : пер. с нем. Москва : Мир, 1987. 567 с. [Schlegel H. G. Allgemeine Mikrobiologie : transl. from German. Moscow : Mir, 1987, 567 p. (in Russ.)]
Alongi D. M. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology, 1988, vol. 15, iss. 1, pp. 59–79. https://doi.org/10.1007/BF02012952
Ashen J. B., Goff L. J. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Applied and Environmental Microbiology, 2000, vol. 66, no. 7, pp. 3024–3030. https://doi.org/10.1128/aem.66.7.3024-3030.2000
Bratbak G. Microscope methods for measuring bacterial biovolume: Epifluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. In: Handbook of Methods in Aquatic Microbial Ecology / P. F. Kemp, J. J. Cole, B. F. Sherr, E. B. Sherr (Eds). Boca Raton : CRC Press, 1993, chap. 36, pp. 309–318. https://doi.org/10.1201/9780203752746
Danger M., Oumarou C., Benest D., Lacroix G. Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Functional Ecology, 2007, vol. 21, iss. 2, pp. 202–210. https://doi.org/10.1111/j.1365-2435.2006.01222.x
Danovaro R., Dell’Anno A., Trucco A., Serresi M., Vanucci S. Determination of virus abundance in marine sediments. Applied and Environmental Microbiology, 2001, vol. 67, no. 3, pp. 1384–1387. https://doi.org/10.1128/aem.67.3.1384-1387.2001
Danovaro R., Middelboe M. Separation of free virus particles from sediments in aquatic systems. In: Manual of Aquatic Viral Ecology / S. W. Wilhelm, M. G. Weinbauer, C. A. Suttle (Eds). Waco, TX : American Society of Limnology and Oceanography, 2010, chap. 8, pp. 74–81.
Falquet J., Hurni J. P. Spiruline, Aspects Nutritionnels. [Sterling, VA] : Antenna Technologies, 2006, 41 p. (in French).
Faucher O., Coupal B., Leduy A. Utilization of sea water–urea as a culture medium for Spirulina maxima. Canadian Journal of Microbiology, 1979, vol. 25, no. 6, pp. 752–759. https://doi.org/10.1139/m79-109
Frischer M. E., Danforth J. M., Newton Healy M. A., Saunders F. M. Whole-cell versus total RNA extraction for analysis of microbial community structure with 16S rRNA-targeted oligonucleotide probes in salt marsh sediments. Applied and Environmental Microbiology, 2000, vol. 66, no. 7, pp. 3037–3043. https://doi.org/10.1128/aem.66.7.3037-3043.2000
Fuhrman J. A. Influence of method on the apparent size distribution of bacterioplankton cells: Epifluorescence microscopy compared to scanning electron microscopy. Marine Ecology Progress Series, 1981, vol. 5, no. 1, pp. 103–106.
Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 1977, vol. 33, no. 5, pp. 1225–1228. https://doi.org/10.1128/aem.33.5.1225-1228.1977
Hoff K. A. Rapid and simple method for double staining of bacteria with 4’,6-diamidino-2-phenylindole and fluorescein isothiocyanate-labeled antibodies. Applied and Environmental Microbiology, 1988, vol. 54, no. 12, pp. 2949–2952. https://doi.org/10.1128/aem.54.12.2949-2952.1988
Jung F., Braune S., Jung C. H. G., Krüger-Genge A., Waldeck P., Petrick I., Küpper J.-H. L. Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells – an overview. Life, 2022, vol. 12, iss. 10, art. no. 1497 (21 p.). https://doi.org/10.3390/life12101497
Kallmeyer J., Smith D. C., Spivack A. J., D’Hondt S. New cell extraction procedure applied to deep subsurface sediments. Limnology and Oceanography: Methods, 2008, vol. 6, iss. 6, pp. 236–245. https://doi.org/10.4319/lom.2008.6.236
Kharchuk I. A., Rylkova O. A., Beregovaya N. M. State of cyanobacteria Arthrospira platensis and of associated microflora during long-term storage in the state of anhydrobiosis. Microbiology, 2022, vol. 91, no. 6, pp. 704–712. https://doi.org/10.1134/S0026261722601786
Lee S., Furman J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 1987, vol. 53, no. 6, pp. 1298–1303. https://doi.org/10.1128/aem.53.6.1298-1303.1987
Lindahl V., Bakken L. R. Evaluation of methods for extraction of bacteria from soil. FEMS Microbiology Ecology, 1995, vol. 16, iss. 2, pp. 135–142. https://doi.org/10.1016/0168-6496(94)00077-A
Lunau M., Lemke A., Walther K., Martens-Habbena W., Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environmental Microbiology, 2005, vol. 7, iss. 7, pp. 961–968. https://doi.org/10.1111/j.1462-2920.2005.00767.x
Marie D., Partensky F., Jacquet S., Vaulot D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology, 1997, vol. 63, no. 1, pp. 186–193. https://doi.org/10.1128/aem.63.1.186-193.1997
Morono Y., Terada T., Masui N., Inagaki F. Discriminative detection and enumeration of microbial life in marine subsurface sediments. The ISME Journal, 2009, vol. 3, iss. 5, pp. 503–511. https://doi.org/10.1038/ismej.2009.1
Nicolas J. L., Robic E., Ansquer D. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: Influence of bacteria on larval survival. Aquaculture, 1989, vol. 83, iss. 3–4, pp. 237–248. https://doi.org/10.1016/0044-8486(89)90036-7
Noble R. T., Fuhrman J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquatic Microbial Ecology, 1998, vol. 14, no. 2, pp. 113–118.
Posch T., Loferer-Krößbacher M., Gao G., Alfreider A., Pernthaler J., Psenner R. Precision of bacterioplankton biomass determination: A comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology, 2001, vol. 25, no. 1, pp. 55–63.
Ramanan R., Kang Z., Kim B.-H., Cho D.-H., Jin L., Oh H.-M., Kim H.-S. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Research, 2015, vol. 8, pp. 140–144. https://doi.org/10.1016/j.algal.2015.02.003
Rylkova O. A., Gulin S. B., Pimenov N. V. Determination of the total microbial abundance in Black Sea bottom sediments using flow cytometry. Microbiology, 2019, vol. 88, iss. 6, pp. 700–708. https://doi.org/10.1134/S0026261719060158
Sapp M., Schwaderer A. S., Wiltshire K. H., Hoppe H.-G., Gerdts G., Wichels A. Species-specific bacterial communities in the phycosphere of microalgae? Microbial Ecology, 2007, vol. 53, iss. 4, pp. 683–699. https://doi.org/10.1007/s00248-006-9162-5
Seymour J. R., Amin S. A., Raina J.-B., Stocker R. Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, vol. 2, art. no. 17065 (12 p.). https://doi.org/10.1038/nmicrobiol.2017.65
Shiraishi H. Association of heterotrophic bacteria with aggregated Arthrospira platensis exopolysaccharides: Implications in the induction of axenic cultures. Bioscience, Biotechnology, and Biochemistry, 2015, vol. 79, iss. 2, pp. 331–341. https://doi.org/10.1080/09168451.2014.972333
Siem-Jørgensen M., Glud R. N., Middelboe M. Viral dynamics in a coastal sediment: Seasonal pattern, controlling factors and relations to the pelagic–benthic coupling. Marine Biology Research, 2008, vol. 4, iss. 3, pp. 165–179, suppl. material. https://doi.org/10.1080/17451000801888718
Solomonova E., Shoman N., Akimov A., Rylkova O., Meger Ya. Application of confocal microscopy and flow cytometry to identify physiological responses of Prorocentrum micans to the herbicide glyphosate. Marine Environmental Research, 2024, vol. 196, art. no. 106417 (8 p.). https://doi.org/10.1016/j.marenvres.2024.106417
Suzuki M. T., Sherr E. B., Sherr B. F. DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting. Limnology and Oceanography, 1993, vol. 38, iss. 7, pp. 1566–1570. https://doi.org/10.4319/lo.1993.38.7.1566
Velji M. I., Albright L. J. Microscopic enumeration of attached marine bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments. Canadian Journal of Microbiology, 1986, vol. 32, no. 2, pp. 121–126. https://doi.org/m86-024
Weinbauer M. G., Beckmann C., Höfle M. G. Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Applied and Environmental Microbiology, 1998, vol. 64, no. 12, pp. 5000–5003. https://doi.org/10.1128/aem.64.12.5000-5003.1998
Wu J. F., Pond W. G. Amino acid composition and microbial contamination of Spirulina maxima, a blue-green alga, grown on the effluent of different fermented animal wastes. Bulletin of Environmental Contamination and Toxicology, 1981, vol. 27, iss. 1, pp. 151–159. https://doi.org/10.1007/BF01611001
ZoBell C. E. The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 1943, vol. 46, no. 1, pp. 39–56. https://doi.org/10.1128/jb.46.1.39-56.1943