Assessment of heavy metal pollution of coastal waters off the Muravyov-Amursky Peninsula using algae as bioindicators
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
Fe, Mn, Cu, Zn, Pb, Cd, and Ni concentrations were measured in brown algae [Sargassum miyabei Yendo and S. pallidum (Turner) C. Agardh] and green algae [Blidingia minima (Nägeli ex Kützing) Kylin, Ulva lactuca Linnaeus, and U. linza Linnaeus] sampled in July 2017 in coastal waters off the city of Vladivostok, Muravyov-Amursky Peninsula, Sea of Japan. Heavy metal concentrations in algae were determined by atomic absorption spectroscopy after thalli mineralization with nitric acid. Dissolved trace elements in seawater were measured by ultrafiltration of water samples and CHCl3–DDTK-Na method. The degree of pollution in various areas of the coastal zone was assessed applying the hazard coefficient for algae (KH). It was calculated as the ratio of metal concentration in an alga to the upper threshold level of background concentrations of the element. Also, integral Trace Element Pollution Index (TEPI-threshold) was applied using KH ≥ 1. Coastal waters off Vladivostok were slightly polluted by heavy metals. At stations located north and south from a solid waste landfill, TEPI-threshold was 2.4–2.8 due to pollution by Pb and Cu (2.7–12 Cthreshold), as well as Zn, Fe, Mn, and Ni. Algae from upper areas of the Amur and Ussuri bays were Fe- and Mn-enriched because of river discharge; TEPI-threshold was 1.7–3.0. Macrophytes of the Eastern Bosphorus Strait were polluted by Fe (3–10 Cthreshold), as well as Mn, Cu, Zn, and Ni (1–1.5 Cthreshold), which results from port activities, shipping, and construction of bridges; TEPI-threshold was 1.0–2.1. Off the eastern coast of the Muravyov-Amursky Peninsula, there was a local zone of high-degree pollution formed due to rainwater drainage from the reclaimed solid waste landfill in Vladivostok; TEPI-threshold was 16. Out of heavy metals studied, Fe and Cu were main pollutants at this station (KH > 80 in algae), while Pb, Mn, Zn, and Ni were co-pollutants. In seawater at this station, concentrations of dissolved elements exceeded the background levels, and pollution by Cu was equal to 3MPL for fishery reservoirs.
Authors
References
Бурдин К. С., Золотухина Е. Ю. Тяжёлые металлы в водных растениях (аккумуляция и токсичность). Москва : Диалог МГУ, 1998. 202 с. [Burdin K. S., Zolotukhina E. Yu. Tyazhelye metally v vodnykh rasteniyakh (akkumulyatsiya i toksichnost’). Moscow : Dialog MGU, 1998, 202 p. (in Russ.)]
Качество морских вод по гидрохимическим показателям. Ежегодник 2017 / ред. А. Н. Коршенко. Москва : Наука, 2018. 220 с. [Marine Water Pollution. Annual Report 2017 / A. Korshenko (Ed.). Moscow : Nauka, 2018, 220 p. (in Russ.)]
Коженкова С. И., Чернова Е. Н. Фоновые концентрации металлов в зелёной водоросли Ulva lactuca из северо-западной части Японского моря // Геосистемы в Северо-Восточной Азии: территориальная организация и динамика : материалы всероссийской научно-практической конференции, Владивосток, 20–21 апреля 2017 г. Владивосток : ТИГ ДВО РАН, 2017. С. 522–526. [Kozhenkova S. I., Chernova E. N. Background concentrations of metals in green alga Ulva lactuca of the north-western Sea of Japan. In: Geosistemy v Severo-Vostochnoi Azii: territorial’naya organizatsiya i dinamika : materialy vserossiiskoi nauchno-prakticheskoi konferentsii, Vladivostok, 20–21 aprelya 2017 g. Vladivostok : TIG DVO RAN, 2017, pp. 522–526. (in. Russ.)]. https://elibrary.ru/zmrltf
Лосев О. В. Содержание тяжёлых металлов и нефтепродуктов в донных отложениях залива Углового (залив Петра Великого, Японское море) // Вестник Дальневосточного отделения Российской академии наук. 2020. № 5 (213). С. 104–115. [Losev O. V. Heavy metals and petroleum hydrocarbons contents in bottom sediments of Uglovoy Bay (Peter the Great Bay, Sea of Japan). Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2020, no. 5 (213), pp. 104–115. (in Russ.)]. https://elibrary.ru/umooak
Лукашев Д. В. Метод расчёта фоновых концентраций тяжёлых металлов в мягких тканях двустворчатых моллюсков для оценки загрязнения р. Днепр // Биология внутренних вод. 2007. № 4. С. 97–106. [Lukashev D. V. The method of calculation of background concentrations of trace metals in freshwater mussel tissue for assessment of pollution in River Dnieper. Biologiya vnutrennikh vod, 2007, no. 4, pp. 97–106. (in Russ.)]. https://elibrary.ru/ibkepb
Мощенко А. В., Белан Т. А., Борисов Б. М., Лишавская Т. С., Севастьянов А. В. Современное загрязнение донных отложений и экологическое состояние макрозообентоса в прибрежной зоне Владивостока (залив Петра Великого Японского моря) // Известия ТИНРО. 2019. Т. 196. С. 155–181. [Moshchenko A. V., Belan T. A., Borisov B. M., Lishavskaya T. S., Sevastianov A. V. Modern contamination of bottom sediments and ecological state of macrozoobenthos in the coastal zone at Vladivostok (Peter the Great Bay, Japan Sea). Izvestiya TINRO, 2019, vol. 196, pp. 155–181. (in Russ.)]. https://doi.org/10.26428/1606-9919-2019-196-155-181
Петухов В. И., Петрова Е. А., Лосев О. В. Тяжёлые металлы и нефтепродукты в водах залива Угловой (Амурский залив, Японское море) в тёплый и холодный периоды года // Вестник Дальневосточного отделения Российской академии наук. 2018. № 1. С. 85–93. [Petukhov V. I., Petrova E. A., Losev O. V. Heavy metals and petroleum hydrocarbons in the waters of the Uglovoy Bay (the Amur Bay, the Sea of Japan) in the warm and cold seasons. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2018, no. 1, pp. 85–93. (in Russ.)]. https://elibrary.ru/yotixj
Рисник Д. В., Беляев С. Д., Булгаков Н. Г., Левич А. П., Максимов В. Н., Мамихин С. В., Милько Е. С., Фурсова П. В., Ростовцева Е. Л. Подходы к нормированию качества окружающей среды. Законодательные и научные основы существующих систем экологического нормирования // Успехи современной биологии. 2012. Т. 132, № 6. С. 531–550. [Risnik D. V., Belyaev S. D., Bulgakov N. G., Levich A. P., Maksimov V. N., Mamikhin S. V., Milko E. S., Fursova P. V., Rostovtseva E. L. Approaches to standardization of environment quality. Legislative and scientific foundations of current ecological normalization systems. Uspekhi sovremennoi biologii, 2012, vol. 132, no. 6, pp. 531–550. (in Russ.)]. https://elibrary.ru/phgcmh
Савенко В. С. Химический состав взвешенных наносов рек мира. Москва : ГЕОС, 2006. 174 с. [Savenko V. S. Chemical Composition of World River’s Suspended Matter. Moscow : GEOS, 2006, 174 p. (in Russ.)]. https://elibrary.ru/qkgfwz
Симоконь М. В. Загрязнение донных отложений Уссурийского залива металлами и металлоидами // Уссурийский залив: современное экологическое состояние, ресурсы и перспективы природопользования : материалы международной научно-практической конференции, Владивосток, 29 ноября 2008 г. Владивосток : Изд-во Дальневосточного государственного университета, 2009. С. 35–38. [Simokon M. V. Zagryaznenie donnykh otlozhenii Ussuriiskogo zaliva metallami i metalloidami. In: Ussuri Bay and Adjacent Water Areas Current Ecology, Resources and Prospects of Nature Management : materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii, Vladivostok, 29 noyabrya 2008 g. Vladivostok : Izd-vo Dal’nevostochnogo gosudarstvennogo universiteta, 2009, pp. 35–38. (in Russ.)]
Христофорова Н. К. Биоиндикация и мониторинг загрязнения морских вод тяжёлыми металлами. Ленинград : Наука, 1989. 192 с. [Khristoforova N. K. Bioindikatsiya i monitoring zagryazneniya morskikh vod tyazhelymi metallami. Leningrad : Nauka, 1989, 192 p. (in Russ.)]. https://elibrary.ru/zsyzlv
Шулькин В. М. Металлы в экосистемах морских мелководий. Владивосток : Дальнаука, 2004. 279 с. [Shulkin V. M. Metally v ekosistemakh morskikh melkovodii. Vladivostok : Dal’nauka, 2004, 279 p. (in Russ.)]. https://elibrary.ru/qkmzkl
Шулькин В. М. Сравнительная оценка аэрального и флювиального поступления вещества в морские экосистемы (на примере Японского моря) // География и природные ресурсы. 2012. № 2. С. 135–140. [Shul’kin V. M. Comparative assessment of the aerial and fluvial inputs of matter into marine ecosystems. Geografiya i prirodnye resursy, 2012, no. 2, pp. 135–140. (in Russ.)]. https://elibrary.ru/ozpnyx
Aboal J. R., Pacín C., García-Seoane R., Varela Z., González A. G., Fernández J. A. Global decrease in heavy metal concentrations in brown algae in the last 90 years. Journal of Hazardous Materials, 2023, vol. 445, art. no. 130511 (14 p.). https://doi.org/10.1016/j.jhazmat.2022.130511
Belcheva N., Istomina A., Dovzhenko N., Lishavskaya T., Chelomin V. Using heavy metal content and lipid peroxidation indicators in the tissues of the mussel Crenomytilus grayanus for pollution assessment after marine environmental remediation. Bulletin of Environmental Contamination and Toxicology, 2015, vol. 95, iss. 4, pp. 481–487. https://doi.org/10.1007/s00128-015-1624-3
Bryan G. W., Hummerstone L. G. Brown seaweed as an indicator of heavy metals in estuaries in south-west England. Journal of the Marine Biological Association of the United Kingdom, 1973, vol. 53, iss. 3, pp. 705–720. https://doi.org/10.1017/S0025315400058902
Cantillo A. Y. Comparison of results of Mussel Watch programs of the United States and France with worldwide Mussel Watch studies. Marine Pollution Bulletin, 1998, vol. 36, iss. 9, pp. 712–717. https://doi.org/10.1016/S0025-326X(98)00049-6
Chalkley R., Child F., Al-Thaqafi K., Dean A. P., White K. N., Pittman J. K. Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage. Ecotoxicology and Environmental Safety, 2019, vol. 182, art. no. 109458 (10 p.). https://doi.org/10.1016/j.ecoenv.2019.109458
Chernova E. N. Determination of the background ranges of trace metals in the brown alga Sargassum pallidum from the Northwestern Sea of Japan. Russian Journal of Marine Biology, 2012, vol. 40, iss. 3, pp. 267–274. https://doi.org/10.1134/S1063074012030030
Chernova E. N., Kozhenkova S. I. Determination of threshold concentrations of metals in indicator algae of coastal waters in the northwest Sea of Japan. Oceanology, 2016, vol. 56, iss. 3, pp. 363–371. https://doi.org/10.1134/S0001437016030024
Chernova E. N., Shulkin V. M. Concentrations of metals in the environment and in algae: The bioaccumulation factor. Russian Journal of Marine Biology, 2019, vol. 45, iss. 3, pp. 191–201. https://doi.org/10.1134/S1063074019030027
Kozhenkova S. I., Chernova E. N., Shulkin V. M. Microelement composition of the green alga Ulva fenestrata from Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 2006, vol. 32, iss. 5, pp. 289–296. https://doi.org/10.1134/S106307400605004X
Kozhenkova S. I., Khristoforova N. K., Chernova E. N., Kobzar A. D. Long-term biomonitoring of heavy metal pollution of Ussuri Bay, Sea of Japan. Russian Journal of Marine Biology, 2021, vol. 47, iss. 4, pp. 256–264. https://doi.org/10.1134/S106307402104009X
Malea P., Kevrekidis T. Trace element patterns in marine macroalgae. Science of the Total Environment, 2014, vol. 494–495, pp. 144–157. https://doi.org/10.1016/j.scitotenv.2014.06.134
Malinovskaya T. M., Khristoforova N. K. Characterization of coastal waters of the South Kuril Islands by the trace element content of indicatory organisms. Russian Journal of Marine Biology, 1997, vol. 23, iss. 4, pp. 212–218. https://elibrary.ru/ldzuqj
Moreda-Piñeiro A., Marcos A., Fisher A., Hill S. J. Evaluation of the effect of data pre-treatment procedures on classical pattern recognition and principal components analysis: A case study for the geographical classification of tea. Journal of Environmental Monitoring, 2001, vol. 3, iss. 4, pp. 352–360. https://doi.org/10.1039/b103658k
Obluchinskaya E. D., Aleshina E. G., Matishov D. G. Comparative assessment of the metal load in the bays and inlets of Murmansk coast by the Metal Pollution Index. Doklady Earth Sciences, 2013, vol. 448, iss. 2, pp. 236–239. https://doi.org/10.1134/S1028334X13020153
Pan Y., Wernberg T., de Bettignies T., Holmer M., Li K., Wu J., Lin F., Yu Y., Xu J., Zhou C., Huang Z., Xiao X. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 2018, vol. 25, iss. 17, pp. 16640–16651. https://doi.org/10.1007/s11356-018-1612-3
Rainbow P. S. Mining-contaminated estuaries of Cornwall – field research laboratories for trace metal ecotoxicology. Journal of the Marine Biological Association of the United Kingdom, 2020, vol. 100, iss. 2, pp. 195–210. https://doi.org/10.1017/S002531541900122X
Rainbow P. S., Phillips D. J. H. Cosmopolitan biomonitors of trace metals. Marine Pollution Bulletin, 1993, vol. 26, iss. 11, pp. 593–601. https://doi.org/10.1016/0025-326X(93)90497-8
Reimann C., Filzmoser P., Garrett R. G. Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 2005, vol. 346, iss. 1–3, pp. 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023
Richir J., Gobert S. A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements: New tools and tips. Marine Pollution Bulletin, 2014, vol. 89, iss. 1–2, pp. 390–406. https://doi.org/10.1016/j.marpolbul.2014.08.030
Sánchez-Quiles D., Marbà N., Tovar-Sánchez A. Trace metal accumulation in marine macrophytes: Hotspots of coastal contamination worldwide. Science of the Total Environment, 2017, vol. 576, pp. 520–527. https://doi.org/10.1016/j.scitotenv.2016.10.144
Scanes P. R., Roach A. C. Determining natural ‘background’ concentrations of trace metals in oysters from New South Wales, Australia. Environmental Pollution, 1999, vol. 105, iss. 3, pp. 437–446. https://doi.org/10.1016/S0269-7491(99)00030-5
Shul’kin V. M., Chernova E. N., Khristoforova N. K., Kozhenkova S. I. Effect of mining activities on the chemistry of aquatic ecosystem components. Water Resources, 2015, vol. 42, iss. 7, pp. 843–853. https://doi.org/10.1134/S009780781507012X
Shul’kin V. M., Kachur A. N., Kozhenkova S. I. Environmental objectives and indicators of the state of marine and coastal zones in the Northwest Pacific region. Geography and Natural Resources, 2017, vol. 38, iss. 1, pp. 52–59. https://doi.org/10.1134/S1875372817010073
Shulkin V. M., Orlova T. Yu., Shevchenko O. G., Stonik I. V. The effect of river runoff and phytoplankton production on the seasonal variation of the chemical composition of coastal waters of the Amursky Bay, Sea of Japan. Russian Journal of Marine Biology, 2013, vol. 39, iss. 3, pp. 197–207. https://doi.org/10.1134/S1063074013030115
Suresh Kumar K., Ganesan K., Subba Rao P. V. Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii. Journal of Hazardous Materials, 2007, vol. 143, iss. 1–2, pp. 590–592. https://doi.org/10.1016/j.jhazmat.2006.09.061
Usero J., González-Regalado E., Gracia I. Trace metals in the bivalve mollusc Chamelea gallina from the Atlantic coast of southern Spain. Marine Pollution Bulletin, 1996, vol. 32, iss. 3, pp. 305–310. https://doi.org/10.1016/0025-326X(95)00209-6
Vashchenko M. A., Zhadan P. M., Almyashova T. N., Kovalyova A. L., Slinko E. N. Assessment of the contamination level of bottom sediments of Amursky Bay (Sea of Japan) and their potential toxicity. Russian Journal of Marine Biology, 2010, vol. 36, iss. 5, pp. 359–366. https://doi.org/10.1134/S1063074010050056
Wang W.-X., Dei R. C. H. Kinetic measurements of metal accumulation in two marine macroalgae. Marine Biology, 1999, vol. 135, iss. 1, pp. 11–23. https://doi.org/10.1007/s002270050596
Yakubov M. R., Sinyashin K. O., Abilova G. R., Tazeeva E. G., Milordov D. V., Yakubova S. G., Borisov D. N., Gryaznov P. I., Mironov N. A., Borisova Yu. Yu. Differentiation of heavy oils according to the vanadium and nickel content in asphaltenes and resins. Petroleum Chemistry, 2017, vol. 57, iss. 10, pp. 849–854. https://doi.org/10.1134/S096554411710019X