##plugins.themes.ibsscustom.article.main##

##plugins.themes.ibsscustom.article.details##

Abstract

In August 2023, surface bottom sediments (top 5-cm layer) were sampled in three bights of Amur Bay: Melkovodnaya Bight (V1), Kruglaya Bight (V2) (both within Voevoda Bight), and Uglovoy Bight (U1). Despite being neighboring bays, V1 and V2 differ significantly in granulometric composition and distribution of both heavy metal concentration and organic carbon content. Elevated levels of heavy metals and organic carbon were revealed in Kruglaya Bight (at station V2). In its bottom sediments, values of the enrichment factor (EF) for each analyzed metal, except for Co, exceeded levels attributable to natural weathering processes. A high level of enrichment was registered for Cd (EF = 24.08); a moderately high one, for Cu (EF = 6.15) and Pb (EF = 5.51); and a moderate one, for Ni, Zn, and Cr (EF accounted for 4.5, 4.3, and 3.21, respectively). The calculation of the modified degree of contamination index (mCd) showed a moderate degree of contamination at sta. V2 (mCd = 4.38). In bottom sediments from sta. V1, most metals were characterized by a low level of enrichment, except for Cd, with its moderate level (EF = 4.07). EF values for bottom sediments from sta. U1 were significantly below 1.5 providing evidence for the natural-origin input of heavy metals from weathering processes. In the studied bays, biotesting was carried out for the first time, with larvae of the sea urchin Scaphechinus mirabilis serving as a test object. During bioassays, the highest abundance of abnormally developed larvae was found at sta. V2. In aqueous extracts of bottom sediments from sta. V2, none of larvae reached the gastrula stage, and the value of the integral toxicity index (ITI) was 9.84 points. In aqueous extracts from sta. V1 and U1, normally developed larvae at the late gastrula stage predominated 18 h after the start of the experiment. In extracts of bottom sediments from Melkovodnaya Bight (sta. V1), the overwhelming majority of larvae developed with severe morphological abnormalities. Larvae at the prism and early pluteus stages were characterized by poorly developed skeletal rods or their lack. Moreover, we found exoforms of larvae with no intestine in their body cavity (it was protruded outward). ITI for bottom sediments from sta. V1 (7.72 points) was twice as high as for samples from sta. U1 (3.5 points). The obtained data indicate that the accumulation of heavy metals in Kruglaya Bight is driven by a combination of factors. In their turn, high concentrations of heavy metals and organic carbon may mediate the formation of unfavorable conditions for benthic organisms.

Authors

A. Ryumina

researcher

https://orcid.org/0000-0002-1740-6029

https://elibrary.ru/author_items.asp?id=1177350

M. Mazur

junior researcher

https://orcid.org/0000-0003-1959-8500

https://elibrary.ru/author_items.asp?id=972723

P. Tishchenko

chief researcher, D. Sc.

https://orcid.org/0000-0002-3500-2861

https://elibrary.ru/author_items.asp?id=44786

E. Shkirnikova

researcher

https://orcid.org/0000-0003-2380-1049

https://elibrary.ru/author_items.asp?id=252205

References

Базилевская Е. С., Сколотнев С. Г. Новые данные о железо-марганцевых образованиях поднятия Менделеева (Северный Ледовитый океан) // Доклады Академии наук. 2019. Т. 486, № 5. С. 562–566. [Bazilevskaya E. S., Skolotnev S. G. New data concerning the ferromanganese crusts of the Mendeleev Rise (Arctic Ocean). Doklady Akademii nauk, 2019, vol. 486, no. 5, pp. 562–566. (in Russ.)]. https://doi.org/10.31857/S0869-56524865562-566

Барабанщиков Ю. А., Тищенко П. Я., Семкин П. Ю., Волкова Т. И., Звалинский В. И., Михайлик Т. А., Сагалаев С. Г., Сергеев А. Ф., Тищенко П. П., Швецова М. Г., Шкирникова Е. М. Сезонные гидролого-гидрохимические исследования бухты Воевода (Амурский залив, Японское море) // Известия ТИНРО. 2015. Т. 180. С. 161–178. [Barabanshchikov Yu. A., Tishchenko P. Ya., Semkin P. Yu., Volkova T. I., Zvalinsky V. I., Mikhailik T. A., Sagalaev S. G., Sergeev A. F., Tishchenko P. P., Shvetsova M. G., Shkirnikova E. M. Seasonal hydrological and hydrochemical surveys in the Voevoda Bay (Amur Bay, Japan Sea). Izvestiya TINRO, 2015, vol. 180, pp. 161–178. (in Russ.)]. https://elibrary.ru/tuesbh

Гаврилова Г. С., Кучерявенко А. В. Продуктивность плантаций двустворчатых моллюсков в Приморье. Владивосток : ТИНРО-центр, 2011. 112 с. [Gavrilova G. S., Kucheryavenko A. V. Produktivnost’ plantatsii dvustvorchatykh mollyuskov v Primor’e. Vladivostok : TINRO-tsentr, 2011, 112 p. (in Russ.)]. https://elibrary.ru/qldhvb

Горбачёва Е. А. Использование биотестирования для оценки загрязнения донных отложений южных районов Баренцева моря // Учёные записки Петрозаводского государственного университета. 2018. № 8 (177). С. 67–73. [Gorbacheva E. A. Bioassay for sediment pollution estimation in the southern areas of the Barents Sea. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta, 2018, no. 8 (177), pp. 67–73. (in Russ.)]. https://doi.org/10.15393/uchz.art.2018.253

Даувальтер В. А. Геоэкология донных отложений озёр. Мурманск : Изд-во МГТУ, 2012. 242 с. [Dauvalter V. A. Geoekologiya donnykh otlozhenii ozer. Murmansk : Izd-vo MGTU, 2012, 242 p. (in Russ.)]. https://elibrary.ru/qklcnr

Иванов Д. В., Валиев В. С., Зиганшин И. И., Шамаев Д. Е., Паймикина Э. Е., Марасов А. А., Маланин В. В., Хасанов Р. Р., Унковская М. А. Структурная взаимосвязь гранулометрического состава, содержания органического вещества и тяжёлых металлов в донных отложениях // Гидроэкология. 2020. № 2 (22). С. 23–30. [Ivanov D. V., Valiev V. S., Ziganshin I. I., Shamaev D. E., Paimikina E. E., Marasov A. A., Malanin V. V., Khasanov R. R., Unkovskaya M. A. Structural relationship of granulometric composition, content of organic matter and heavy metals in sediments. Gidroekologiya, 2020, no. 2 (22), pp. 23–30. (in Russ.)]. https://elibrary.ru/ycqnwh

Качество морских вод по гидрохимическим показателям. Ежегодник 2022 / под ред. А. Н. Коршенко. Москва : Наука, 2024. 283 с. [Marine Water Pollution. Annual Report 2022 / A. Korshenko (Ed). Moscow : Nauka, 2024, 283 p. (in Russ.)]

Ковековдова Л. Т., Симоконь М. В. Тенденции изменения химико-экологической ситуации в прибрежных акваториях Приморья. Токсичные элементы в донных отложениях и гидробионтах // Известия ТИНРО. 2004. Т. 137. С. 310–320. [Kovekovdova L. T., Simokon M. V. Tendencies in change of chemoecological situation in the coastal area of Primorye. Toxic elements in bottom sediments and aquatic organisms. Izvestiya TINRO, 2004, vol. 137, pp. 310–320. (in Russ.)].

">https://elibrary.ru/hpmucn

Лосев О. В. Анализ источников загрязнения залива Угловой (залив Петра Великого) и факторов его загрязнённости // Вестник Дальневосточного отделения Российской академии наук. 2019. № 2 (204). С. 95–103. [Losev O. V. Analysis of pollution sources of the Uglovoy Bay (Peter the Great Bay) and its pollution factors. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk, 2019, no. 2 (204), pp. 95–103. (in Russ.)]. https://elibrary.ru/coogca

Мазур А. А., Журавель Е. В., Слободскова В. В., Мазур М. А. Оценка токсического воздействия ионов цинка и наночастиц оксида цинка на раннее развитие морского ежа Scaphechinus mirabilis (Agassiz, 1864) (Echinodermata: Echinoidea) // Биология моря. 2020. Т. 46, № 1. С. 53–59. [Mazur A. A., Zhuravel E. V., Slobodskova V. V., Mazur M. A. Assessment of the toxic effect of zinc ions and nano-sized zinc oxide on the early development of the sand dollar Scaphechinus mirabilis (Agassiz, 1864) (Echinodermata: Echinoidea). Biologiya morya, 2020, vol. 46, no. 1, pp. 53–59. (in Russ.)]. https://doi.org/10.31857/S0134347520010064

Мишуков В. Ф., Калинчук В. В., Плотников В. В., Войцыцкий А. В. Влияние дампинга загрязнённых грунтов на экологическое состояние прибрежных вод г. Владивосток // Известия ТИНРО. 2009. Т. 159. С. 243–256. [Mishukov V. F., Kalinchuk V. V., Plotnikov V. V., Voytsytskiy A. V. Effects of polluted grounds dumping on ecological conditions in coastal waters near Vladivostok. Izvestiya TINRO, 2009, vol. 159, pp. 243–256. (in Russ.)]. https://elibrary.ru/mnjqxl

Налета Е. В., Колесников С. И., Казеев К. Ш. Влияние загрязнения тяжёлыми металлами на биологические свойства почв городов Ростовской области. Ростов-на-Дону : Изд-во Южного федерального университета, 2015. 108 с. [Naleta E. V., Kolesnikov S. I., Kazeev K. Sh. Vliyanie zagryazneniya tyazhelymi metallami na biologicheskie svoistva pochv gorodov Rostovskoi oblasti. Rostov-on-Don : Izd-vo Yuzhnogo federal’nogo universiteta, 2015, 108 p. (in Russ.)]. https://elibrary.ru/vwlsah

Орехова Н. А., Овсяный Е. И., Тихонова Е. А. Органическое вещество и окислительно-восстановительные условия в донных отложениях Балаклавской бухты // Учёные записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. 2019. Т. 5 (71), № 3. С. 49–64. [Orekhova N. A., Ovsyany E. I., Tikhonova E. A. Organic carbon and redox conditions in bottom sediments of the Balaklava Bay. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Biologiya. Khimiya, 2019, vol. 5 (71), no. 3, pp. 49–64. (in Russ.)]. https://elibrary.ru/hvtrpq

Петров А. Н. Реакция прибрежных макробентосных сообществ Чёрного моря на органическое обогащение донных отложений // Экология моря. 2000. Вып. 51. С. 45–51. [Petrov A. N. Responses of the Black Sea macrobenthic communities upon organic enrichment impact of bottom sediments. Ekologiya morya, 2000, iss. 51, pp. 45–51. (in Russ.)]. https://repository.marine-research.ru/handle/299011/4297

Раков В. А. Распространение и экология устричных рифов северной части Амурского залива // Современное состояние и тенденции изменения природной среды залива Петра Великого Японского моря / отв. ред. А. С. Астахов, В. Б. Лобанов. Москва : ГЕОС, 2008. С. 278–291. [Rakov V. A. Distribution and ecology of oyster reefs in the northern part of the Amur Bay. In: Current Environmental Condition and Tendencies of Its Change in the Peter the Great Bay, Sea of Japan / A. S. Astakhov, V. B. Lobanov (Eds). Moscow : GEOS, 2008, pp. 278–291. (in Russ.)]. https://elibrary.ru/twvleb

Романкевич Е. А., Ветров А. А. Углерод в Мировом океане. Москва : ГЕОС, 2021. 352 с. [Romankevich E. A., Vetrov A. A. Carbon in the World Ocean. Moscow : GEOS, 2021, 352 p. (in Russ.)]. https://doi.org/10.34756/GEOS.2021.16.37857

Рюмина А. А., Тищенко П. Я., Шкирникова Е. М. Тяжёлые металлы и органический углерод в донных осадках мелководных бухт залива Петра Великого // Геохимия. 2023. Т. 68, № 7. С. 709–719. [Ryumina A. A., Tishchenko P. Y., Shkirnikova E. M. Heavy metals and organic carbon in the bottom sediments of shallow bights of the Peter the Great Bay. Geokhimiya, 2023, vol. 68, no. 7, pp. 709–719. (in Russ.)]. https://doi.org/10.31857/S0016752523060080

Тищенко П. Я., Барабанщиков Ю. А., Павлова Г. Ю., Рюмина А. А., Сагалаев С. Г., Семкин П. Ю., Тищенко П. П., Уланова О. А., Швецова М. Г., Шкирникова Е. М., Тибенко Е. Ю. Гидрохимическое состояние залива Угловой (Амурский залив) в разные сезоны // Известия ТИНРО. 2021. Т. 201, № 1. С. 138–157. [Tishchenko P. Ya., Barabanshchikov Yu. A., Pavlova G. Yu., Ryumina A. A., Sagalaev S. G., Semkin P. Yu., Tishchenko P. P., Ulanova O. A., Shvetsova M. G., Shkirnikova E. M., Tibenko E. Yu. Hydrochemical state of the Uglovoy Bight (Amur Bay) in different seasons. Izvestiya TINRO, 2021, vol. 201, no. 1, pp. 138–157. (in Russ.)]. https://doi.org/10.26428/1606-9919-2021-201-138-157

Тищенко П. Я., Медведев Е. В., Барабанщиков Ю. А., Павлова Г. Ю., Сагалаев С. Г., Тищенко П. П., Швецова М. Г., Шкирникова Е. М., Уланова О. А., Тибенко Е. Ю., Орехова Н. А. Органический углерод и карбонатная система в донных отложениях мелководных бухт залива Петра Великого (Японское море) // Геохимия. 2020. Т. 65, № 6. С. 583–598. [Tishchenko P. Y., Medvedev E. V., Barabanshchikov Y. A., Pavlova G. Y., Sagalaev S. G., Tishchenko P. P., Shvetsova M. G., Shkirnikova E. M., Ulanova O. A., Tibenko E. Y., Orekhova N. A. Organic carbon and carbonate system in the bottom sediments of shallow bights of the Peter the Great Bay (Sea of Japan). Geokhimiya, 2020, vol. 65, no. 6, pp. 583–598. (in Russ.)]. https://doi.org/10.31857/S001675252005012X

Христофорова Н. К., Гамаюнова О. А., Афанасьев А. П. Состояние бухт Козьмина и Врангеля (залив Петра Великого, Японское море): динамика загрязнения тяжёлыми металлами // Известия ТИНРО. 2015. Т. 180. С. 179–186. [Khristoforova N. K., Gamayunova O. A., Afanasyev A. P. State of the Kozmin and Wrangel bays (Peter the Great Bay, Japan Sea): Dynamics of pollution with heavy metals. Izvestiya TINRO, 2015, vol. 180, pp. 179–186. (in Russ.)]. https://elibrary.ru/tuescb

Христофорова Н. К., Емельянов А. А., Ефимов А. В. Биоиндикация загрязнения прибрежно-морских вод о. Русского (залив Петра Великого, Японское море) тяжёлыми металлами // Известия ТИНРО. 2018. Т. 192. С. 157–166. [Khristoforova N. K., Emelyanov A. A., Efimoff A. V. Bioindication of pollution in the coastal marine waters at Russky Island (Peter the Great Bay, Japan Sea) by heavy metals. Izvestiya TINRO, 2018, vol. 192, pp. 157–166. (in Russ.)]. https://doi.org/10.26428/1606-9919-2018-192-157-166

ABNT-NBR 15350 DE 03/2023. Ecotoxicologia aquática – Toxicida decrônica de curtaduração – Método de ensaio com ouriço-do-mar (Echinodermata: Echinoidea) : [Standard] ; Quanta ediçãlo. ABNT, Brasil, 2025, 31 p. (Norma Brasileira). URL: https://www.normas.com.br/autorizar/visualizacao-nbr/25082/identificar/visitante [accessed: 05.01.2025].

ASTM. Standard Guide for Conducting Static Acute Toxicity Tests with Echinoid Embryos. West Conshohocken (PA) : ASTM International, 2012, 22 p. https://doi.org/10.1520/E1563-98R12

Beiras R., Fernández N., Bellas J., Besada V., González-Quijano A., Nunes T. Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere, 2003, vol. 52, iss. 7, pp. 1209–1224. https://doi.org/10.1016/s0045-6535(03)00364-3

Brady J. P., Ayoko G. A., Martens W. N., Goonetilleke A. Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine Pollution Bulletin, 2014, vol. 81, iss. 1, pp. 248–255. https://doi.org/10.1016/j.marpolbul.2014.01.031

Canty M. N. Marine Pollution and Echinoderms: A Biomarker Study Integrating Different Levels of Biological Organization. PhD thesis. Plymouth, United Kingdom : University of Plymouth, 2009, 237 p. https://doi.org/10.24382/3680

Chiarelli R., Martino C., Roccheri M. C. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress and Chaperones, 2019, vol. 24, iss. 4, pp. 675–687. https://doi.org/10.1007/s12192-019-01010-1

Hart B. T. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiologia, 1982, vol. 91, iss. 1, pp. 299–313. https://doi.org/10.1007/bf00940121

Khozhaenko E. V., Khotimchenko R. Y., Kovalev V. V., Khotimchenko M. Y., Podkorytova E. A. Metal binding activity of pectin isolated from seagrass Zostera marina and its derivatives. Russian Journal of Marine Biology, 2015, vol. 41, iss. 6, pp. 485–489. https://doi.org/10.1134/S1063074015060073

Li Y., Duan Z., Liu G., Kalla P., Scheidt D., Cai Y. Evaluation of the possible sources and controlling factors of toxic metals/metalloids in the Florida Everglades and their potential risk of exposure. Environmental Science & Technology, 2015, vol. 49, iss. 16, pp. 9714–9723. https://doi.org/10.1021/acs.est.5b01638

MacDonald D. D., Carr R. S., Eckenrod D., Greening H., Grabe S., Ingersoll C. G., Janicki S., Janicki T., Lindskoog R. A., Long E. R., Pribble R., Sloane G., Smorong D. E. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida. Archives of Environmental Contamination and Toxicology, 2004, vol. 46, iss. 2, pp. 147–161. https://doi.org/10.1007/s00244-003-2270-z

Manzo S., Buono S., Cremisini C. Cadmium, lead and their mixtures with copper: Paracentrotus lividus embryotoxicity assessment, prediction, and offspring quality evaluation. Ecotoxicology, 2010, vol. 19, iss. 7, pp. 1209–1223. https://doi.org/10.1007/s10646-010-0506-z

Morroni L., Pinsino A., Pellegrini D., Regoli F., Matranga V. Development of a new integrative toxicity index based on an improvement of the sea urchin embryo toxicity test. Ecotoxicology and Environmental Safety, 2016, vol. 123, pp. 2–7. https://doi.org/10.1016/j.ecoenv.2015.09.026

Petukhov V., Petrova E., Kiryanov A., Zheldak E., Kholodov A. Assessment of contamination of marine sediments and their potential toxicity in the Uglovoy Bay, Peter the Great Gulf, Sea of Japan/East Sea. Environmental Science and Pollution Research, 2023, vol. 30, iss. 31, pp. 77798–77806. https://doi.org/10.1007/s11356-023-28021-x

Roberts D. A. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environment International, 2012, vol. 40, pp. 230–243. https://doi.org/10.1016/j.envint.2011.11.013

Rouchon A. M., Phillips N. E. Acute toxicity of copper, lead, zinc and their mixtures on the sea urchin Evechinus chloroticus. New Zealand Journal of Marine and Freshwater Research, 2017, vol. 51, no. 3, pp. 333–355. https://doi.org/10.1080/00288330.2016.1239643

Warmer H., van Dokkum R. Water Pollution Control in the Netherlands: Policy and Practice 2021 / [Institute for Inland Water Management and Waste Water Treatment. RIZA]. The Netherlands : RIZA, 2002, 76 p. (RIZA report 2002.009).

Wilbers G.-J., Becker M., Thi Nga L., Sebesvari Z., Renaud F. G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Science of The Total Environment, 2014, vol. 485–486, pp. 653–665. https://doi.org/10.1016/j.scitotenv.2014.03.049

Funding

Работа выполнена при финансовой поддержке государственных программ ТОИ ДВО РАН (№ регистрации 124022100077-0).