##plugins.themes.ibsscustom.article.main##

Romanova D. Yu., Petrov A. N., Nevrova E. L. Copper sulphate impact on growth and cell morphology of clonal strains of four benthic diatom species (Bacillariophyta) from the Black Sea. Marine Biological Journal, 2017, vol. 2, no. 3, pp. 53-67. https://doi.org/10.21072/mbj.2017.02.3.05

##plugins.themes.ibsscustom.article.details##

Abstract

Many species of benthic diatoms (Bacillariophyta) are sensitive to ecological stressors and therefore changes in its parameters of development under various toxicants’ impact can be considered as bioindicators on indirect assessment of the environment quality. The study is focused on investigation of the population growth and changes in morphologic features of diatom cells in cloned cultures under single addition of copper sulfate (CuSo4) in five successively decreasing concentrations (128 mkg∙l-1 to 8 mkg∙l-1 of copper ions). The cloned cultures of 4 marine benthic species Bacillariophyta: Cyclophora tenuis Castracane 1878, Psammodictyon panduriforme var. continua (Grunow) Snoeijs 1998, Entomoneis paludosa (W. Smith) Reimer in Patrick & Reimer 1975 and Haslea sp. were used in experiments. The first two taxa were reported from the Black Sea diatom flora for the first time. By the results of 10-days toxicological experiments was ascertain that according to resistance to the toxicant the considered species are split into two groups. The mostly sensitive species P. panduriforme var. continua and Haslea sp. stopped population growth already at the minimum concentration of toxicant (8 mkg∙l-1 Cu2+). Toxic benchmark of the copper sulphate causing to termination of cell development and growth of cell number for these 2 species is very low and falls within range 0 to 8 mkg∙l-1 Cu2+. Considering moderately tolerant species E. paludosa, the threshold concentration of copper ions is 16 mkg∙l-1, when differences in average cell number comparing with the control level are statistically significant under various exposure time of experiments. For tolerant C. tenuis the threshold concentration of Cu2+ is 32 mkg∙l-1 by which depression of cell growth always significantly differed from the control. By low concentrations of copper ions (8 and 16 mkg∙l-1), increasing the cell number of moderately tolerant species along to extension of experiments can be well extrapolated by power function (for C. tenuis) or by sigmoid function (for E. paludosa). In the control, population growth of all 4 investigated diatom species can be approximated by the exponential curve fitting for different duration of experiments (3 to 10 days). The certain peculiarities of diatom cells response under high concentration of toxicant, such as abnormality of morphogenesis and multiple non-separations of valves from any one side of cell after vegetative phase of cytokinesis were marked.

Authors

D. Yu. Romanova

https://orcid.org/0000-0002-7508-3969

https://elibrary.ru/author_items.asp?id=825488

A. N. Petrov

https://orcid.org/0000-0002-0137-486X

https://elibrary.ru/author_items.asp?id=742861

E. L. Nevrova

https://orcid.org/0000-0001-9963-4967

https://elibrary.ru/author_items.asp?id=742525

References

Баринова С. С., Медведева Л. А., Анисимова О. В. Биоразнообразие водорослей индикаторов окружающей среды. Тель-Авив: PiliesStudio, 2006. 498 с. [Barinova S. S., Medvedeva L. A., Anissimova O. V. Diversity of algae indicators in environmental assessment. Tel Aviv: Pilies Studio, 2006, 498 p. (in Russ.)].

Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей : учебное пособие. Уфа : Изд-во БГПУ, 2008. 152 с. [Gaisina L. A., Fazlutdinova A. I., Kabirov R. R. Sovremenniye metody vydeleniya i kultivirovaniya vodoroslei: uchebnoe posobie. Ufa: Izd-vo BGPU, 2008, 152 p. (in Russ.)].

Гелашвили Д. Б., Безель В. С., Романова Е. Б., Безруков М. Е., Силкин А. А., Нижегородцев А. А. Принципы и методы экологической токсикологии. Нижний Новгород : Нижегородский госун-т, 2015. 142 с. [Gelashvili D. B., Bezel V. S., Romanova E. B., Bezrukov M. E., Silkin A. A., Nizhegorodtsev A. A. Printsipy i metody ekologicheskoi toksikologii. Nizhnii Novgorod: Nizhnegorodskii gosun-t, 2015, 142 p. (in Russ.)].

Крайнюкова А. Н. Биотестирование и охрана вод от загрязнения // Методы биотестирования вод. Черноголовка, 1988. С. 4–21. [Kraynukova A. N. Biotestirovanie i okhrana vod ot zagrazneniya. In: Metody biotestirovaniya vod. Chernogolovka, 1988, pp. 4–21. (in Russ.)].

Маркина Ж. В., Айздайчер Н. А. Оценка качества вод Амурского залива Японского моря на основе биотестирования с применением одноклеточной водоросли Pheodactylum tricornutum Bohlin // Сибирский экологический журнал. 2011. Т. 1. С. 99–105. [Markina Z. V., Aizdaicher N. A. Phaeodactylum tricornutum Bohlin bioassay of water quality of amur bay (the Sea of Japan). Sibirskii ekologicheskii shurnal, 2011, vol. 4, no. 1, pp. 99–105. (in Russ.)].

Неврова Е. Л., Снигирева А. А., Петров А. Н., Ковалева Г. В. Руководство по изучению морского микрофитобентоса и его применению для контроля качества среды / под ред. А. В. Гаевской. Севастополь ; Симферополь : Н. Орiанда, 2015. 176 с. [Nevrova E. L., Snigireva A. A., Petrov A. N., Kovaleva G. V. Guidelines from quality control of the Black Sea. Microphytobenthos. A. V. Gaevskaya (Ed.). Sevastopol; Simferopol: N. Orianda, 2015, 176 p. (in Russ.)].

Шилова Е. Л. Влияние тяжелых металлов на представителей пресноводного фито- и зоопланктона в условиях засоления: дис. ... канд. биол. наук. Саратов, 2014. 133 с. [Shilova E. L. Vliyanie tyazhelykh metallov na predstavitelei presnovodnogo fito- i zooplanktona v usloviyakh zasoleniya: dis. ... kand. biol. nauk. Saratov, 2014, 133 p. (in Russ.)].

Флеров Б. А. Биотестирование: терминология, задачи, перспективы // Теоретические вопросы биотестирования. Волгоград : АН СССР, Ин-т биологии внутренних вод, 1983. С. 13–20. [Flerov B. A. Biotestirovanie: terminologiya, zadachi, perspektivy. In: Teoreticheskie voprosy biotestirovaniya. Volgograd: AN SSSR, In-t biologii vnutrennikh vod, 1983, pp. 13–20. (in Russ.)].

Эколого-токсикологические аспекты загрязнения морской среды / под ред. С. А. Патина. Ленинград : Гидрометеоиздат, 1985. Т. 5. 116 с. [Ekologo-toksikologicheskie aspekty zagryazneniya morskoi sredy. S. A. Patin (Ed.). Leningrad: Gidrometeoizdat, 1985, vol. 5, 116 p. (in Russ.)].

Behrenfeld M. J., Boss E., Siegel D. A., Shea D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles, 2005, vol. 19, iss. 1, GB1006. doi: 10.1029/2004GB002299.

Berges J. A., Franklin D. J., Harrison P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. Journal of Phycology, 2001, vol. 37, iss. 6, pp. 1138–1145. doi: 10.1046/j.1529-8817.2001.01052.x.

Bishop N. I., Senger H. Preparation and photosynthetic properties of synchronous cultures of Scenedesmus. Methods in Enzymology, 1971, vol. 23, pp. 53–66. doi: 10.1016/S0076-6879(71)23079-2.

Cid A., Herrero C., Torres E., Abalde J. Copper toxicity on the marine microalga Phaeodactylum

tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 1995, vol. 31, iss. 2, pp. 165–174. doi: 10.1016/0166-445X(94)00071-W.

Field С. В., Behrenfeld M. J., Randerson J. T., Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, vol. 281, iss. 5374, pp. 237–240. doi: 10.1126/science.281.5374.237.

Florence T. M., Stauber J. L. Toxicity of copper complexes to the marine diatom Nitzschia closterium. Aquatic Toxicology, 1986, vol. 8, iss. 1, pp. 11–26. doi: 10.1016/0166-445X(86)90069-X.

Fourtanier E. Kociolek J. P. Catalogue of Diatom Names. California Academy of Sciences, 2011. Available at: http://researcharchive.calacademy.org/research/diatoms/names/index.asp [accessed 12.07.2017].

Guillard R. R. L., Hargraves P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 1993, vol. 32, no. 3, pp. 234–236. doi: 10.2216/i0031-8884-32-3-234.1.

Harrison P. J., Waters R. E., Taylor F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. Journal of Phycology, 1980, vol. 16, iss. 1, pp. 28–35. doi: 10.1111/j.0022-3646.1980.00028.x.

Hustedt F. Die Kieselalgen Deutschlands, Osterreichs und der Schweiz. In: Kryptogamenflora von Deutschland, Osterreichs und der Schweiz. L. Rabenhorst (Ed.). Leipzig, 1961–1966, bd. 7, teil 3, 816 p.

Markina Zh. V., Aizdaicher N. A. Content of photosynthetic pigments, growth, and cell size of microalga Phaeodactylum tricornutum in the copper-polluted environment. Russian Journal of Plant Physiology, 2006, vol. 53, no. 3, pp. 305–309.

Markina Zh. V., Aizdaicher N. A. Influence of the ariel detergent on the growth and physiological state of the unicellular algae Dunaliella salina (Chrorophyta) and Plagioselmis protonga (Cryptophyta). Hydrobiological Journal, 2010, vol. 46, no. 2, pp. 49–56.

Metal ions in Biological systems. Vol. 44: Biogeochemistry, Availability and Transport of Metals in the Environment. H. Sigel, A. Sigel, R. K. Sigel (Eds.). New York, 2005, 352 p.

Nelson D. M., Treguer P., Brzezinski M. A., Leynaert A., Queguiner B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995, vol. 9, iss. 3, pp. 359–372. doi: 10.1029/95GB01070.

Polyak Y. M., Zaytseva T. V., Petrova V. N., Medvedeva N. G. Development of mass cyanobacteria species under heavy metals pollution. Hydrobiological Journal, 2011, vol. 47, no. 3, pp. 75–90.

Rijstenbil J. W., Gerringa L. J. A. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Aquatic Toxicology, 2002, vol. 56, iss. 2, pp. 115–131. doi: 10.1016/S0166-445X(01)00188-6.

Round F. E., Crawford R. M., Mann D. G. The diatoms. Biology and morphology of the genera. Cambridge : Cambridge University press, 1990, 747 p.

Smolyakov B. S., Ryzhikh A. P., Romanov R. E. The fate of Cu, Zn and Cd in the initial stage of water system contamination: the effect on phytoplankton activity. Journal of Hazardous Materials, 2010, vol. 184, iss. 1–3, pp. 819–825. doi: 10.1016/j.jhazmat.2010.08.115.

Tempère J., Peragallo H., Peragallo M. Diatomées du Monde Entier : in 30 fascs. 2nd ed. Arcachon : J. Tempère, 1912, fascs. 20–23, pp. 305–352.

The Diatom World. Seckbach, J., Kociolek, J. P. (Eds). Dordrecht ; Heidelberg ; London ; New-York: Springer, 2011, 533 p.

Witkowski A., Lange-Bertalot H., Metzeltin D. Diatom flora of Marine coast. Koenigstein: Koeltz Scientific Books, 2000, vol. 1, 926 p. (Iconographia Diatomologica : Annotated Diatom Monographs. H. Lange-Bertalot (Ed.); vol. 7).

Yan J. X., Liu J. L., Yi L., Lang S. S. Effect of water current on the distribution of polycyclic aromatic hydrocarbons heavy metals and benthic diatom community in sediments of Haihe estuary, China. Environmental Science & Pollution Research, 2014, vol. 21, iss. 20, pp. 12050–12061.

Funding

This work was carried out within the framework of IMBR state research assignment No. 115081110013.

Statistics

Downloads

Download data is not yet available.