##plugins.themes.ibsscustom.article.main##

Gevorgiz R. G., Zheleznova S. N. The carbon fixation efficiency in biomass of Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin (Bacillariophyceae) under the conditions of cumulative cultivation. Marine Biological Journal, 2020, vol. 5, no. 1, pp. 12-19. https://doi.org/10.21072/mbj.2020.05.1.02

##plugins.themes.ibsscustom.article.details##

Abstract

The carbon utilization efficiency is an important characteristic of the cultivated object. Diatom Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin is known to use carbon from aquatic environment quite effectively, as it has many unique carbonic anhydrases and carbon transporters. However, the carbon fixation efficiency for many types of diatoms in culture is still unknown. When calculating the carbon fixation efficiency, researchers use different terminology and methods, and it leads to significant difficulties when comparing the carbon fixation efficiency in the biomass of various types of microalgae. The aims of this study are: 1) to update terms and definitions used in literature on the basis of modern concepts of carbon fixation in microalgae biomass, as well as absorption of inorganic carbon by microalgae culture; 2) to evaluate the carbon fixation efficiency in the biomass of C. closterium diatom under conditions of cumulative cultivation. C. closterium was grown at a temperature of +20 °C on a nutrient medium RS. During the cultivation, the culture was bubbled with air (1.1 L of air per 1 L of culture per minute). The air temperature at the outlet of the suspension was of +19 °C; the maximum productivity of the culture was of 1.254 g·L−1·day−1. According to the results of the CHN analysis, the proportion of carbon in C. closterium dry biomass was of 23 %. Under the conditions of cumulative cultivation in C. closterium, the carbon fixation efficiency in biomass was of 90 %. Compared with other algae species, C. closterium is characterized by a rather high CO2 fixation efficiency. For example, in green microalga Chlorella protothecoides and Ch. vulgaris, the CO2 fixation efficiency was of 20 % and 55.3 %, respectively; in cyanobacteria Spirulina sp. – of 38 %; in red microalgae Porphyridium purpureum – of 69 %. It was observed that to ensure an increase of 1 g of C. closterium dry biomass per day at a temperature of +19 °C, a minimum of 0.46 L of CO2, or 1132 L of air, should be consumed. Possibly, it is high carbon fixation efficiency, as well as low carbon fraction in C. closterium biomass, that explains the high production indices of this species. Under equal conditions of cultivation in terms of light and carbon availability, the productivity of C. closterium can exceed the productivity of other types of microalgae by 5–10 times. So, while Spirulina sp. productivity reaches 0.2 g·L−1·day−1, C. closterium productivity is of 1.254 g·L−1·day−1.

Authors

R. G. Gevorgiz

senior researcher, PhD

https://orcid.org/0000-0002-8017-5593

https://elibrary.ru/author_items.asp?id=918203

S. N. Zheleznova

junior researcher

https://orcid.org/0000-0003-1800-5902

https://elibrary.ru/author_items.asp?id=996168

References

Геворгиз Р. Г., Железнова С. Н., Никонова Л. Л., Бобко Н. И., Нехорошев М. В. Оценка плотности культуры фототрофных микроорганизмов методом йодатной окисляемости. Севастополь, 2015. 31 с. (Препринт / Ин-т морских биологических исследований РАН). [Gevorgiz R. G., Zheleznova S. N., Nikonova L. L., Bobko N. I., Nekhoroshev M. V. Otsenka plotnosti kul’tury fototrofnykh mikroorganizmov metodom iodatnoi okislyaemosti. Sevastopol, 2015, 31 p. (Priprint / Kovalevsky Institute of Marine Biological Research of RAS). (in Russ.)]. https://repository.marine-research.ru/handle/299011/43

Геворгиз Р. Г., Железнова С. Н., Зозуля Ю. В., Уваров И. П., Репков А. П., Лелеков А. С. Промышленная технология производства биомассы морской диатомеи Cylindrotheca closterium (Ehrenberg) Reimann & Lewin с использованием газовихревого фотобиореактора // Актуальные вопросы биологической физики и химии. 2016. № 1–1. С. 73–77. [Gevorgiz R. G., Zheleznova S. N., Zozulya Yu. V., Uvarov I. P., Repkov A. P., Lelekov A. S. Industrial production technology biomass marine diatoms Cylindrotheca closterium (Ehrenberg) Reimann & Lewin using gas vortex photobioreactor. Aktual’nyye voprosy biologicheskoy fiziki i khimii, 2016, no. 1–1, pp. 73–77. (in Russ.)]

Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2018 году». Москва : Минприроды России ; НПП «Кадастр», 2019. 844 с. [Gosudarstvennyi doklad “O sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2018 godu”. Moscow : Minprirody Rossii ; NPP “Kadastr”, 2019, 844 p. (in Russ.)]

Железнова С. Н. Продукционные характеристики морской диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin в интенсивной культуре при различных источниках азота в питательной среде // Морской биологический журнал. 2019. Т. 4, № 1. С. 33–44. [Zheleznova S. N. Production characteristics of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin grown in an intensive culture at various nitrogen sources in the medium. Morskoj biologicheskij zhurnal, 2019, vol. 4, iss. 1, pp. 33–44. (in Russ.)]. https://doi.org/10.21072/mbj.2019.04.1.04

Железнова С. Н., Геворгиз Р. Г., Бобко Н. И., Лелеков А. С. Питательная среда для интенсивной культуры диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – перспективного объекта биотехнологий // Актуальная биотехнология. 2015. № 3 (14). С. 46–48. [Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The culture medium for the intensive culture of diatomic alga Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – promising biotech facility. Aktual’naya biotekhnologiya, 2015, no. 3 (14), pp. 46–48. (in Russ.)]

Лелеков А. С., Гудвилович И. Н., Геворгиз Р. Г., Тренкеншу Р. П., Бадисова А. О. Оценка коэффициента абсорбции углерода культурой Porphyridium purpureum (Bory) Ross // Морские биологические исследования: достижения и перспективы : в 3-х т. : сб. материалов Всерос. науч.-практ. конф. с междунар. участием, приуроч. к 145-летию Севастопольской биологической станции, Севастополь, 19–24 сентября 2016 г. Севастополь, 2016. Т. 3. С. 404–407. [Lelekov A. S., Gudvilovich I. N., Gevorgiz R. G., Trenkenshu R. P., Badisova A. O. Evaluation of carbon absorption coefficient by Porphyridium purpureum (Bory) Ross. In: Morskie biologicheskie issledovaniya: dostizheniya i perspektivy : v 3-kh t. : sb. materialov Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem, priuroch. k 145-letiyu Sevastopol’skoi biologicheskoi stantsii, Sevastopol, 19–24 Sept., 2016. Sevastopol, 2016, vol. 3, pp. 404–407. (in Russ.)]

Klinthong W., Yang Y./̄H., Huang C./̄H., Tan C./̄S. A review: Microalgae and their applications in CO2 capture and renewable energy. Aerosol and Air Quality Research, 2015, vol. 15, iss. 2, pp. 712–742. https://doi.org/10.4209/aaqr.2014.11.0299

Kroth P. G., Chiovitti A., Gruber A., Martin-Jezequel V., Mock T., Parker M. S., Stanley M. S., Kaplan A., Caron L., Weber T., Maheswari U., Armbrust E. V., Bowler C. A. Model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One, 2008, vol. 3, iss. 1, article e1426. https://doi.org/10.1371/journal.pone.0001426

Lauritano C., Ferrante M. I., Rogato A. Marine natural products from microalgae: An -omics overview. Marine Drugs, 2019, vol. 17, iss. 5, pp. 269 (18 p.). https://doi.org/10.3390/md17050269

Liu S., Elvira P., Wang Y., Wang W. Growth and nutrient utilization of green algae in batch and semicontinuous autotrophic cultivation under high CO2 concentration. Applied Biochemistry and Biotechnology, 2019, vol. 188, iss. 3, pp. 836–853. https://doi.org/10.1007/s12010-018-02940-9

Martínez Andrade K. A., Lauritano C., Romano G., Ianora A. Marine microalgae with anti-cancer properties. Marine Drugs, 2018, vol. 16, iss. 5, pp. 165 (17 p.). https://doi.org/10.3390/md16050165

Matsuda Y., Hopkinson B. M., Nakajima K., Dupont C. L., Tsuji Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philosophical Transactions of the Royal Society B, 2017, vol. 372, pp. 1–12. https://doi.org/10.1098/rstb.2016.0403

Obata T., Fernie A. R., Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. Metabolites, 2013, vol. 3, iss. 2, pp. 325–346. https://doi.org/10.3390/metabo3020325

Priyadarshani I., Rath B. Bioactive compounds from microalgae and cyanobacteria: Utility and applications. International Journal of Pharma Sciences and Research, 2012, vol. 3, iss. 11, pp. 4123–4130. https://doi.org/10.13040/IJPSR.0975-8232.3(11).4123-30

Quigg A., Finkel Z. V., Irwin A. J., Rosenthal Y., Ho T./̄Y., Reinfelder J. R., Schofield O., Morel F. M., Falkowski P. G. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 2003, vol. 425, pp. 291–294. https://doi.org/10.1038/nature01953

Ryabushko V. I., Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The medium for intensive culture of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin (Bacillariophyta). International Journal on Algae, 2016, vol. 18, iss. 3, pp. 279–286. https://doi.org/10.1615/InterJAlgae.v18.i3.70

Suman K., Kiran T., Devi U. K., Sarma N. S. Culture medium optimization and lipid of Cylindrotheca, a lipid- and polyunsaturated fatty acid-rich pennate diatom and potential source of eicosapentaenoic acid. Botanica Marina, 2012, vol. 55, iss. 3, pp. 289–299. https://doi.org/10.1515/bot-2011-0076

Wang S., Verma S. K., Said I. H., Thomsen L., Ullrich M. S., Kuhnert N. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial Cell Factories, 2018, vol. 17, article no. 110 (13 p.). https://doi.org/10.1186/s12934-018-0957-0

Ying L., Kang-sen M., Shi-chun S. Effects of harvest stage on the total lipid and fatty acid composition of four Cylindrotheca strains. Chinese Journal of Oceanology and Limnology, 2002, vol. 20, iss. 2, pp. 157–161. https://doi.org/10.1007/BF02849653

Zhang H., Tang Y., Zhang Y., Zhang S., Qu J., Wang X., Kong R., Han C., Liu Z. Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID 723515 (10 p.) http://dx.doi.org/10.1155/2015/723515

Zheleznova S. N., Gevorgiz R. G., Nekhoroshev M. V. Conditions optimization of the Cylindrotheca closterium (Ehrenberg) Reimann et Lewin cultivation in order to obtain a high yield of fucoxanthin. In: 3rd Russian Conference on Medicinal Chemistry, Kazan, 28 Sept. – 03 Oct., 2017 : Abstr. book. Kazan : Kazan Federal University, 2017, pp. 261.

Funding

This work was carried out within the framework of government research assignment of IBSS RAS “Investigation of the mechanisms of controlling production processes in biotechnological complexes with the aim of developing the scientific foundations for the production of biologically active substances and technical products of marine genesis” (No. АААА-А18-118021350003-6) with financial support of the RFBR grant No. 18-34-00672.

Statistics

Downloads

Download data is not yet available.