##plugins.themes.bootstrap3.article.main##

Кацев А. М., Сазыкин И. С., Хмелевцова Л. Е., Сафронюк С. Л., Карчава Ш. К., Климова М. В., Хаммами М. И., Сазыкина М. А. Биолюминесцентные бактерии Чёрного и Азовского морей // Морской биологический журнал. 2024. Т. 9, № 3. С. 44-55. https://doi.org/10.21072/mbj.2024.09.3.05

##plugins.themes.bootstrap3.article.details##

Аннотация

Целью настоящего исследования было выделить биолюминесцентные бактерии из прибрежных акваторий Чёрного и Азовского морей, изучить их морфологические и биохимические характеристики и идентифицировать их на основе последовательностей генов 16S рРНК, recA и gyrB. Из морских гидробионтов выделены 9 изолятов, из морской воды — 12. Результаты биохимических и молекулярно-генетических исследований показали, что выделенные светящиеся бактерии относятся к родам Vibrio, Aliivibrio и Photobacterium. Установлено, что все 5 люминесцентных штаммов, выделенных из воды и гидробионтов Азовского моря, принадлежат виду Photobacterium leiognathi. Бактерии, выделенные из Чёрного моря, отнесены к родам Aliivibrio и Vibrio. Род Aliivibrio представлен 2 штаммами Aliivibrio fischeri, ассоциированными с различными гидробионтами; 14 штаммов рода Vibrio отнесены к видам Vibrio campbellii, V. jasicida, V. harveyi, V. owensii и V. aquamarinus sp. nov. Таким образом, таксономический состав культивируемых люминесцентных бактерий в Азовском и Чёрном морях существенно различается.

Авторы

А. М. Кацев
зав. кафедрой медицинской и фармацевтической химии, д. б. н.

https://orcid.org/0000-0002-7762-3818

https://elibrary.ru/author_items.asp?id=201420

И. С. Сазыкин
в. н. с., д. б. н.

https://orcid.org/0000-0002-0864-1473

https://elibrary.ru/author_items.asp?id=582958

Л. Е. Хмелевцова
с. н. с., к. б. н.

https://orcid.org/0000-0003-0781-2207

https://elibrary.ru/author_items.asp?id=729955

С. Л. Сафронюк
ст. преподаватель кафедры медицинской и фармацевтической химии, к. фарм. н.

https://orcid.org/0000-0002-6276-7755

https://elibrary.ru/author_items.asp?id=776196

Ш. К. Карчава
м. н. с.

https://orcid.org/0000-0003-3617-1904

https://elibrary.ru/author_items.asp?id=777404

М. В. Климова
м. н. с.

https://orcid.org/0000-0001-6152-3030

https://elibrary.ru/author_items.asp?id=782186

М. И. Хаммами
м. н. с.

https://orcid.org/0000-0002-8438-9150

https://elibrary.ru/author_items.asp?id=641180

М. А. Сазыкина
в. н. с., д. б. н., проф.

https://orcid.org/0000-0001-6974-3361

https://elibrary.ru/author_items.asp?id=175405

Библиографические ссылки

Ast J. C., Cleenwerck I., Engelbeen K., Urbanczyk H., Thompson F. L., De Vos P., Dunlap P. V. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. International Journal of Systematic and Evolutionary Microbiology, 2007, vol. 57, iss. 9, pp. 2073–2078. https://doi.org/10.1099/ijs.0.65153-0

Ast J. C., Urbanczyk H., Dunlap P. V. Multi-gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio. Systematic and Applied Microbiology, 2009, vol. 32, iss. 6, pp. 379–386. https://doi.org/10.1016/j.syapm.2009.04.005

Baumann P., Schubert R. H. W. Family II. Vibrionaceae Veron 1956, 5245AL. In: Bergey’s Manual of Systematic Bacteriology / D. H. Bergey, N. R. Krieg, J. G. Holt (Eds). Baltimore ; London : Williams & Wilkins, 1984, vol. 1, pp. 516–517.

Baumstark-Khan C., Rabbow E., Rettberg P., Horneck G. The combined bacterial Lux-Fluoro test for the detection and quantification of genotoxic and cytotoxic agents in surface water: Results from the “Technical Workshop on Genotoxicity Biosensing”. Aquatic Toxicology, 2007, vol. 85, iss. 3, pp. 209–218. https://doi.org/10.1016/j.aquatox.2007.09.003

Cano-Gómez A., Goulden E. F., Owens L., Høj L. Vibrio owensii sp. nov., isolated from cultured crustaceans in Australia. FEMS Microbiology Letters, 2010, vol. 302, iss. 2, pp. 175–181. https://doi.org/10.1111/j.1574-6968.2009.01850.x

Chugunova E. A., Mukhamatdinova R., Sazykina M., Dobrynin A., Sazykin I., Karpenko A., Mirina E., Zhuravleva M., Karchava S., Burilov A. Synthesis of new ‘hybrid’ compounds based on benzofuroxans and aminoalkylnaphthalimides. Chemical Biology & Drug Design, 2016, vol. 87, iss. 4, pp. 626–634. https://doi.org/10.1111/cbdd.12685

Deryabin D. G. Bakterial’naya biolyuminestsentsiya: fundamental’nye i prikladnye aspekty. Moscow : Nauka, 2009, 246 p. (in Russ.)

Dunlap P. V., Urbanczyk H. Luminous bacteria. In: The Prokaryotes / E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson (Eds). Berlin ; Heidelberg : Springer, 2013, pp. 495–528. https://doi.org/10.1007/978-3-642-30141-4_75

Farmer III J. J., Michael Janda J. Vibrionaceae. In: Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, New Jersey : John Wiley & Sons : Bergey’s Manual Trust, 2015. https://doi.org/10.1002/9781118960608.fbm00212

Farmer III J. J., Michael Janda J., Brenner F. W., Cameron D. N., Birkhead K. M. Vibrio. In: Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, New Jersey : John Wiley & Sons : Bergey’s Manual Trust, 2015. https://doi.org/10.1002/9781118960608.gbm01078

Gomez-Gil B., Thompson F. L., Thompson C. C., Swings J. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. International Journal of Systematic and Evolutionary Microbiology, 2003, vol. 53, iss. 1, pp. 239–243. https://doi.org/10.1099/ijs.0.02430-0

Ivask A., Green T., Polyak B., Mor A., Kahru A., Virta M., Marks R. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 2007, vol. 22, iss. 7, pp. 1396–1402. https://doi.org/10.1016/j.bios.2006.06.019

Katsev A. M. Utilities of luminous bacteria from the Black Sea. Applied Biochemistry and Microbiology, 2002, vol. 38, iss. 2, pp. 189–192. https://doi.org/10.1023/A:1014327020286

Katsev A. M., Makemson J. Identification of luminescent bacteria isolated from the Black and Azov seas. Uchenye zapiski Tavricheskogo natsional’nogo universiteta imeni V. I. Vernadskogo. Seriya Biologiya. Khimiya, 2006, vol. 19 (58), no. 4, pp. 111–116.

Kovalenko S. I., Nosulenko I. S., Voskoboynik A. Yu., Berest G. G., Antipenko L. N., Antipenko A. N., Katsev A. M. Novel N-aryl(alkaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides: Synthesis, cytotoxicity, anticancer activity, COMPARE analysis and docking. Medicinal Chemistry Research, 2013, vol. 22, no. 6, pp. 2610–2632. https://doi.org/10.1007/s00044-012-0257-x

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 2018, vol. 35, iss. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Kuryanov V. O., Chupakhina T. A., Shapovalova A. A., Katsev A. M., Chirva V. Ya. Glycosides of hydroxylamine derivatives: I. Phase transfer synthesis and the study of the influence of glucosaminides of isatine 3-oximes on bacterial luminescence. Russian Journal of Bioorganic Chemistry, 2011, vol. 37, iss. 2, pp. 231–239. https://doi.org/10.1134/S1068162011020105

Labella A. M., Arahal D. R., Castro D., Lemos M. L., Borrego J. J. Revisiting the genus Photobacterium: Taxonomy, ecology and pathogenesis. International Microbiology, 2017, vol. 20, iss. 1, pp. 1–10. https://doi.org/10.2436/20.1501.01.280

Lucena T., Ruvira M. A., Arahal D. R., Macian M. C., Pujalte M. J. Vibrio aestivus sp. nov. and Vibrio quintilis sp. nov., related to Marisflavi and Gazogenes clades, respectively. Systematic and Applied Microbiology, 2012, vol. 35, iss. 7, pp. 427–431. https://doi.org/10.1016/j.syapm.2012.08.002

Maligina V. Yu., Katsev A. M. Luminous bacteria from the Black Sea and the Sea of Azov. Ekologiya morya, 2003, vol. 64, pp. 18–23. (in Russ.). https://repository.marine-research.ru/handle/299011/4587

Moi I. M., Roslan N. N., Leow A. T. C., Mohamad Ali M. S., Rahman R. N. Z. R. A., Rahimpour A., Sabri S. The biology and the importance of Photobacterium species. Applied Microbiology and Biotechnology, 2017, vol. 101, iss. 11, pp. 4371–4385. https://doi.org/10.1007/s00253-017-8300-y

Niu S., Wang S., Shi C., Zhang S. Studies on the fluorescence fiber-optic DNA biosensor using p-hydroxyphenylimidazo[f]1,10-phenanthroline ferrum(III) as indicator. Journal of Fluorescence, 2008, vol. 18, iss. 1, pp. 227–235. https://doi.org/10.1007/s10895-007-0266-1

Patent 2358009 RU, MPK C12N 1/20, C12Q 1/04. Isolation Method of Bioluminescent Bacteria / M. A. Sazykina, I. E. Tsybulskii, K. S. Abrosimova, Southern Federal University. No. 2007114379/13, zayvl. 16.04.2007, opubl. 10.06.2009. Bul. no. 16. (in Russ.)

Patent 2368658 RU, MPK C12N 1/20, C12Q 1/04. Nutrient Medium for Bioluminescent Bacteria Cultivation / M. A. Sazykina, I. E. Tsybulskii, K. S. Abrosimova, Southern Federal University. No. 2007114380/13, zayvl. 16.04.2007, opubl. 27.09.2009. Bul. no. 27. (in Russ.)

Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, vol. 4, iss. 4, pp. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 1977, vol. 74, no. 12, pp. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463

Sazykin I. S., Sazykina M. A., Khammami M. I., Khmelevtsova L. E., Kostina N. V., Trubnik R. G. Distribution of polycyclic aromatic hydrocarbons in surface sediments of lower reaches of the Don River (Russia) and their ecotoxicologic assessment by bacterial lux-biosensors. Environmental Monitoring and Assessment, 2015, vol. 187, no. 5, art. no. 277 (12 p.). https://doi.org/10.1007/s10661-015-4406-9

Sazykin I. S., Sazykina M. A., Khmelevtsova L. E., Mirina E. A., Kudeevskaya E. M., Rogulin E. A., Rakin A. V. Biosensor-based comparison of the ecotoxicological contamination of the wastewaters of Southern Russia and Southern Germany. International Journal of Environmental Science and Technology, 2016, vol. 13, iss. 3, pp. 945–954. http://doi.org/10.1007/s13762-016-0936-0

Sönmez A. Y., Sazykina M., Bilen S., Gültepe N., Sazykin I., Khmelevtsova L. E., Kostina N. V. Assessing contamination in sturgeons grown in recirculating aquaculture system by lux-biosensors and metal accumulation. Fresenius Environmental Bulletin, 2016, vol. 25, no. 4, pp. 1028–1037.

Taga M. E., Bassler B. L. Chemical communication among bacteria. Proceedings of the National Academy of Sciences, 2003, vol. 100, no. suppl_2, pp. 14549–14554. https://doi.org/10.1073/pnas.1934514100

Thompson F. L., Iida T., Swings J. Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 2004, vol. 68, no. 3, pp. 403–431. https://doi.org/10.1128/MMBR.68.3.403-431.2004

Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2003, vol. 53, iss. 5, pp. 1615–1617. https://doi.org/10.1099/ijs.0.02660-0

Thyssen A., Ollevier F. Photobacterium. In: Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, New Jersey : John Wiley & Sons : Bergey’s Manual Trust, 2015. https://doi.org/10.1002/9781118960608.gbm01076

Tsybulskii I. E., Sazykina M. A. New biosensors for assessment of environmental toxicity based on marine luminescent bacteria. Applied Biochemistry and Microbiology, 2010, vol. 46, iss. 5, pp. 505–510. https://doi.org/10.1134/S0003683810050078

Urbanczyk H., Ast J. C., Dunlap P. V. Phylogeny, genomics, and symbiosis of Photobacterium. FEMS Microbiology Reviews, 2011, vol. 35, iss. 2, pp. 324–342. https://doi.org/10.1111/j.1574-6976.2010.00250.x

Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2007, vol. 57, iss. 12, pp. 2823–2829. https://doi.org/10.1099/ijs.0.65081-0

Wang Y., Zhang X.-H., Yu M., Wang H., Austin B. Vibrio atypicus sp. nov., isolated from the digestive tract of the Chinese prawn (Penaeus chinensis O’sbeck). International Journal of Systematic and Evolutionary Microbiology, 2010, vol. 60, iss. 11, pp. 2517–2523. https://doi.org/10.1099/ijs.0.016915-0

Yoshizawa S., Karatani H., Wada M., Yokota A., Kogure K. Aliivibrio sifiae sp. nov., luminous marine bacteria isolated from seawater. Journal of General and Applied Microbiology, 2010a, vol. 56, iss. 6, pp. 509–518. https://doi.org/10.2323/jgam.56.509

Yoshizawa S., Tsuruya Y., Fukui Y., Sawabe T., Yokota A., Kogure K., Higgins M., Carson J., Thompson F. L. Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon). International Journal of Systematic and Evolutionary Microbiology, 2012, vol. 62, iss. Pt_8, pp. 1864–1870. https://doi.org/10.1099/ijs.0.025916-0

Yoshizawa S., Wada M., Kita-Tsukamoto K., Ikemoto E., Yokota A., Kogure K. Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 2009a, vol. 59, iss. 7, pp. 1645–1649. https://doi.org/10.1099/ijs.0.004283-0

Yoshizawa S., Wada M., Kita-Tsukamoto K., Yokota A., Kogure K. Photobacterium aquimaris sp. nov., a luminous marine bacterium isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 2009b, vol. 59, iss. 6, pp. 1438–1442. https://doi.org/10.1099/ijs.0.004309-0

Yoshizawa S., Wada M., Yokota A., Kogure K. Vibrio sagamiensis sp. nov., luminous marine bacteria isolated from sea water. Journal of General and Applied Microbiology, 2010b, vol. 56, iss. 6, pp. 499–507. https://doi.org/10.2323/jgam.56.499

Zheng H., Liu L., Lu Y., Long Y., Wang L., Ho K.-P., Wong K.-Y. Rapid determination of nanotoxicity using luminous bacteria. Analytical Science, 2010, vol. 26, iss. 1, pp. 125–128. https://doi.org/10.2116/analsci.26.125

Финансирование

This work was funded by the Russian Science Foundation (grant No. 22-25-20206, https://rscf.ru/project/22-25-20206/) and the Ministry of Science and Higher Education of the Russian Federation (No. FENW-2023-0008). Also, the work was partially supported by the V. I. Vernadsky Crimean Federal University Development Program for 2015–2024 (project I/2018/16 L-BAT). The research was carried out using the equipment of the Laboratory of Biochemiluminescent Analytical Technologies (L-BAT) at the V. I. Vernadsky Crimean Federal University.

Статистика

Скачивания

Данные скачивания пока недоступны.