Production characteristics of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin grown in an intensive culture at various nitrogen sources in the medium
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
The diatom Cylindrotheca closterium (Ehrenberg) Reimann et Levin is characterized by high productivity (up to 1.5 g·l-1·day-1) and the ability to accumulate a valuable carotenoid fucoxanthin (up to 2 % of dry weight). In the development of biotechnology based on microalgae, the key issue is the creation of concentrated nutrient medium. Nitrogen is one of the most important components in the nutrient medium that significantly affects the production characteristics of all microalgae. The aim of this study is to compare the production characteristics of C. closterium in an intensive storage culture using different forms of nitrogen in the medium. In the first experiment, nitrate and sodium nitrite, urea, and nitrogen in the form of ammonium were used as a source of nitrogen. The amount of nitrates, nitrites, ammonium, and urea in the medium was calculated from the nitrogen content of the RS nutrient medium, with a nitrogen to phosphorus ratio of 15 : 1. In the second experiment, amino acids were used as a nitrogen source – arginine, asparagine, cysteine. The possibility of using the microalgae C. closterium for the growth of various organic sources of nitrogen (urea, cysteine, asparagine) was shown. Productive characteristics in the intensive storage culture of C. closterium using urea, cysteine, and asparagine as the sole source of nitrogen in the RS nutrient medium were determined. It is shown that when urea was used, the productivity reached its maximum values and amounted to 1.5 g·l-1·day-1. Thus, the expediency of using urea in the medium for obtaining the maximum yield of biomass was shown. The use of cysteine in the stationary phase of growth to achieve a long stationary phase with minimal concentrations of the nitrogen source in the nutrient medium is also advisable. It was found that C. closterium was able to grow and vegetate at sufficiently high concentrations of nitrite, and the addition of nitrogen in ammonium form to the nutrient medium during the active growth of C. closterium led to inhibition of all metabolic processes and to the death of the culture.
Authors
References
Геворгиз Р. Г., Железнова С. Н., Зозуля Ю. В., Уваров И. П., Репков А. П., Лелеков А. С. Промышленная технология производства биомассы морской диатомеи Cylindrotheca closterium (Ehrenberg) Reimann & Lewin с использованием газовихревого фотобиореактора // Актуальные вопросы биологической физики и химии. 2016. № 1–1. С. 73–77. [Gevorgiz R. G., Zheleznova S. N., Zozulya Yu. V., Uvarov I. P., Repkov A. P., Lelekov A. S. Industrial production technology biomass marine diatoms Cylindrotheca closterium (Ehrenberg) Reimann & Lewin using gas vortex photobioreactor. Aktual’nye voprosy biologicheskoi fiziki i khimii, 2016, no. 1–1, pp. 73–77. (in Russ.)]
Геворгиз Р. Г., Железнова С. Н., Никонова Л. Л., Бобко Н. И., Нехорошев М. В. Оценка плотности культуры фототрофных микроорганизмов методом йодатной окисляемости. Севастополь, 2015. 31 с. (Препринт / РАН, Ин-т морских биологических исследований им. А. О. Ковалевского). [Gevorgiz R. G., Zheleznova S. N., Nikonova L. L., Bobko N. I., Nekhoroshev M. V. Estimation of microalgae culture density by iodate oxidation method. Sevastopol, 2015, 31 p. (Preprint / RAS, Kovalevsky Institute of Marine Biological Research). (in Russ.)] https://repository.marine-research.ru/handle/299011/43
Железнова С. Н., Геворгиз Р. Г., Нехорошев М. В., Бобко Н. И. Влияние концентрации азота в среде на накопление фукоксантина в биомассе диатомовой водоросли Cylindrotheca closterium // Морские биологические исследования: достижения и перспективы : в 3-х т. : сб. материалов Всерос. науч.-практ. конф. с междунар. участием, приуроч. к 145-летию Севастопольской биологической станции, Севастополь, 19–24 сентября 2016 г. / под общ. ред. А. В. Гаевской. Севастополь : ЭКОСИ-Гидрофизика, 2016. Т. 1. С. 416–418. [Zheleznova S. N., Gevorgiz R. G., Nekhoroshev M. V., Bobko N. I. Influence of nitrogen concentration on fucoxanthin accumulation in diatom Cylindrotheca closterium biomass. In: Morskie biologicheskie issledovaniya: dostizheniya i perspektivy : v 3-kh t. : sb. materialov Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem, priuroch. k 145-letiyu Sevastopol’skoi biologicheskoi stantsii, Sevastopol, 19–24 Sept., 2016 / A. V. Gaevskaya (Ed.). Sevastopol: EKOSI-Gidrofizika, 2016, vol. 1, pp. 416–418. (in Russ.)]
Рябушко В. И., Железнова С. Н., Геворгиз Р. Г., Бобко Н. И., Лелеков А. С. Среда для интенсивного культивирования Cylindrotheca closterium (Ehrenb.) Reimann et Lewin (Bacillariophyta) // Альгология. 2016. Т. 26, № 3. С. 237–247. [Ryabushko V. I., Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The medium for intensive culture of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin (Bacillariophyta). Al’gologiya, 2016, vol. 26, no. 3, pp. 237–247. (in Russ.)] http://dx.doi.org/10.15407/alg26.03.237
Allen A. E., Vardi A., Bowler C. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Current Opinion in Plant Biology, 2006, vol. 9, iss. 3, pp. 264–273. http://doi.org/10.1016/j.pbi.2006.03.013
Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J. P., Zheng H., Johnson D. A., Hu H., Fernie A. R., Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 2011, vol. 473, no. 7346, pp. 203–207. http://doi.org/10.1038/nature10074
Anderson M. A., Morel F. M. M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnology and Oceanography, 1982, vol. 27, iss. 5, pp. 789–813. http://doi.org/10.4319/lo.1982.27.5.0789
Andersson M. G. I., van Rijswijk P., Middelburg J. J. Uptake of dissolved inorganic nitrogen, urea and amino acids in the Scheldt estuary: comparison of organic carbon and nitrogen uptake. Aquatic Microbial Ecology, 2006, vol. 44, iss. 3, pp. 303–315. http://dx.doi.org/10.3354/ame044303
Berges J. Miniview: algal nitrate reductases. European Journal of Phycology, 1997, vol. 32, iss. 1, pp. 3–8. https://doi.org/10.1080/09541449710001719315
Blasco D., Conway H. L. Effect of ammonium on the regulation of nitrate assimilation in natural phytoplankton populations. Journal of Experimental Marine Biology and Ecology, 1982, vol. 61, iss. 2, pp. 157–168. http://doi.org/10.1016/0022-0981(82)90005-3
Bressler S. L., Ahmed S. I. Detection of glutamine synthetase activity in marine phytoplankton: Optimization of the biosynthetic assay. Marine Ecology Progress Series, 1984, vol. 14, pp. 207–217.
Bromke M. A. Amino Acid Biosynthesis Pathways in Diatoms. Metabolites, 2013, vol. 3, iss. 2, pp. 294–311. http://doi.org/10.3390/metabo3020294
Chen C., Li Q., Zhou Q., Sun L., Zheng M., Gao Y. Accumulation of free amino acids in marine diatom resting cells during rejuvenation. Journal of Sea Research, 2014, vol. 85, pp. 483–490. http://doi.org/10.1016/j.seares.2013.08.003
de la Cuesta J. L., Manley S. L. Iodine assimilation by marine diatoms and other phytoplankton in nitrate-replete conditions. Limnology and Oceanography, 2009, vol. 54, iss. 5, pp. 1653–1664. http://doi.org/10.4319/lo.2009.54.5.1653
Flynn K. J., Syrett P. J. Characteristics of the uptake system for L-lysine and L-arginine in Phaeodactylum tricornutum. Marine Biology, 1986, vol. 90, iss. 2, pp.1151–158. http://doi.org/10.1007/BF00569121
Grant B. R., Madgwick J., Dal Pont G. Growth of Cylindrotheca closterium var. californica (Mereschk.) Reimann & Lewin on nitrate, ammonia, and urea. Marine and Freshwater Research, 1967, vol. 18, iss. 2, pp. 129–136. http://doi.org/10.1071/MF9670129
Grant B. R., Turner I. M. Light-stimulated nitrate and nitrite assimilation in several species of algae. Comparative Biochemistry and Physiology, 1969, vol. 29, iss. 3, pp. 995–1004. http://doi.org/10.1016/0010-406X(69)91001-9
Keeling P. J. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B, 2010, vol. 365, no. 1541, pp. 729–748. http://doi.org/10.1098/rstb.2009.0103
Milligan A. J., Harrison P. J. Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology, 2000, vol. 36, iss. 1, pp. 78–86. http://doi.org/10.1046/j.1529-8817.2000.99013.x
Parker M. S., Armbrust E. V. Synergistic effects of light, temperature and nitrogen source on transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 2005, vol. 41, iss. 6, pp. 1142–1153. https://doi.org/10.1111/j.1529-8817.2005.00139.x
Peng J., Yuan J.-P., Wu C.-F., Wang J.-H. Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms: Metabolism and Bioactivities Relevant to Human Health. Marine Drugs, 2011, vol. 9, iss. 10, pp. 1806–1828. http://doi.org/10.3390/md9101806
Price N. M., Harrison P. J. Uptake of urea C and urea N by the coastal marine diatom Thalassiosira pseudonana. Limnology and Oceanography, 1988, vol. 33, iss. 4, pp. 528–537. http://doi.org/10.4319/lo.1988.33.4.0528
Prihoda J., Tanaka A., de Paula W. B. M., Allen J. F., la Tirichine L., Bowler C. Chloroplast-mitochondria cross-talk in diatoms. Journal of Experimental Botany, 2012, vol. 63, iss. 4, pp. 1543–1557. http://doi.org/10.1093/jxb/err441
Rogato A., Amato A., Iudicone D., Chiurazzi M., Ferrante M. I., d’Alcalà M. R. The diatom molecular toolkit to handle nitrogen uptake. Marine Genomics, 2015, vol. 24, pt. 1, pp. 95–108. http://doi.org/10.1016/j.margen.2015.05.018
Song B., Ward B. B. Molecular cloning and characterization of high affinity nitrate transporters in marine phytoplankton. Journal of Phycology, 2007, vol. 43, iss. 3, pp. 542–552. http://doi.org/10.1111/j.1529-8817.2007.00352.x
Suman K., Kiran T., Devi U. K., Sarma N. S. Culture medium optimization and lipid of Cylindrotheca, a lipid- and polyunsaturated fatty acid-rich pennate diatom and potential source of eicosapentaenoic acid. Botanica Marina, 2012, vol. 55, iss. 3, pp. 289–299. http://doi.org/10.1515/bot-2011-0076
Swamy U., Wang M., Tripathy J. N., Kim S. K., Hirasawa M., Knaff D. B., Allen J. P. Structure of spinach nitrite reductase: Implications for multi-electron reactions by the iron-sulfur:siroheme cofactor. Biochemistry, 2005, vol. 44, iss. 49, pp. 16054–16063. http://doi.org/10.1021/bi050981y
Williams S. K., Hodson R. C. Transport of urea at low concentrations in Chlamydomonas reinhardi. Journal of Bacteriology, 1977, vol. 130, iss. 1, pp. 266–273.
Yuan L., Loqué D., Ye F., Frommer W. B., von Wirén N. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiology, 2007, vol. 143, iss. 2, pp. 732–744. http://doi.org/10.1104/pp.106.093237