Production characteristics of a culture of the diatom Cylindrotheca closterium (Ehrenberg) Reimann et Lewin in a two-stage chemostat
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.details##
Abstract
The advantages and disadvantages of flow and batch microalgae cultivation are discussed. The benefits of the flow cultivation are indicated, in particular in a quasi-continuous mode in a two-stage chemostat. It is proposed to use the culture of the benthic diatom Cylindrotheca closterium as a producer of valuable substances since this species has several useful properties of both biological and technological nature. Specifically: 1) C. closterium is characterized by relatively high production rates; 2) it efficiently utilizes light energy which removes restrictions on the location of production in areas with a small number of sunny days per year; 3) it has a rather low temperature optimum for growth which is significant for the implementation of industrial technologies in Russian Federation; and 4) it has the specific density of cells of more than one, therefore, cells quickly enough sink to the photobioreactor bottom in the absence of the culture aeration (this simplifies the separation of biomass from the culture medium and reduces its cost). The aim of this work is to analyze the production characteristics of the quasi-continuous C. closterium culture in the two-stage chemostat. The studies were carried out at a temperature of (20 ± 1) °C and irradiation of 150 μmol quanta·m−2·s−1. The chemostat for C. closterium cultivation consisted of two glass 3-L photobioreactors of the plane-parallel type, each having a working thickness of 5 cm and a working surface of 0.03 m². The cultivation was carried out on the nutrient medium RS with a constant aeration (the speed was of 1.5 L of air per 1 L of culture per min). The culture was examined at different dilution rates of the nutrient medium: ; 0.3; 0.5; 0.7; and 0.9 day−1. The growth parameters of the batch culture were calculated: the specific growth rate μн = 0.7 day−1; the time for doubling the biomass td = 0.987 days. The maximum productivity of a one- and two-stage chemostat was registered at the optimal dilution rate of 0.59 day−1; the values were 1.348 and 1.498 g·L−1·day−1, respectively. As found experimentally, C. closterium productivity in the flow culture is 2.2 times higher than in the batch culture. The experimental data were used to calculate the maximum specific growth rate μm and the saturation constant KS with limiting C. closterium growth by silicon; the values were 1.05 day−1 and 0.028 g·L−1, respectively. It was shown that the observed need for silicon in the flow culture (Yпр = 35 mg·g−1) is lower by 7.9% than in the batch culture (Yн = 38 mg·g−1). For the diatom C. closterium, μm, KS, and Yпр are important physiological characteristics; those play the key role in the design of industrial systems for intensive microalgae cultivation.
Authors
References
Геворгиз Р. Г., Железнова С. Н., Зозуля Ю. В., Уваров И. П., Репков А. П., Лелеков А. С. Промышленная технология производства биомассы морской диатомеи Cylindrotheca closterium (Ehrenberg) Reimann & Lewin с использованием газовихревого фотобиореактора // Актуальные вопросы биологической физики и химии. 2016. № 1–1. С. 73–77. [Gevorgiz R. G., Zheleznova S. N., Zozulya Yu. V., Uvarov I. P., Repkov A. P., Lelekov A. S. Industrial production technology biomass marine diatoms Cylindrotheca closterium (Ehrenberg) Reimann & Lewin using gas vortex photobioreactor. Aktual’nye voprosy biologicheskoi fiziki i khimii, 2016, no. 1–1, pp. 73–77. (in Russ.)]
Геворгиз Р. Г., Железнова С. Н., Никонова Л. Л., Бобко Н. И., Нехорошев М. В. Оценка плотности культуры фототрофных микроорганизмов методом йодатной окисляемости. Севастополь, 2015. 31 с. (Препринт / Институт морских биологических исследований имени А. О. Ковалевского, РАН). [Gevorgiz R. G., Zheleznova S. N., Nikonova L. L., Bobko N. I., Nekhoroshev M. V. Otsenka plotnosti kul’tury fototrofnykh mikroorganizmov metodom iodatnoi okislyaemosti. Sevastopol, 2015, 31 p. (Preprint / A. O. Kovalevsky Institute of Marine Biological Research of RAS). (in Russ.)]. URL: https://repository.marine-research.ru/handle/299011/43
Гительзон И. И., Фиш А. М., Чумакова Р. И., Кузнецов А. М. Максимальная скорость размножения бактерий и возможность её определения // Доклады Академии наук СССР. 1973. Т. 211, № 6. С. 1453–1455. [Gitelzon I. I., Fish A. M., Chumakova R. I., Kuznetsov A. M. Maximum reproduction rate of bacteria and the possibility of its determination. Doklady Akademii nauk SSSR, 1973, vol. 211, no. 6, pp. 1453–1455. (in Russ.)]
Железнова С. Н., Геворгиз Р. Г. Интенсивная культура диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin // Вопросы современной альгологии. 2014. № 1 (5). [Zheleznova S. N., Gevorgiz R. G. Intensive culture of diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin. Voprosy sovremennoi algologii, 2014, no. 1 (5). (in Russ.)]. URL: http://algology.ru/474
Железнова С. Н., Бобко Н. И., Геворгиз Р. Г., Нехорошев М. В. Баланс железа в плотной культуре диатомовой водоросли Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin // Фундаментальные и прикладные проблемы современной экспериментальной биологии растений : сборник материалов всероссийской научной конференции с международным участием и школы для молодых учёных, посвящённых 125-летию Института физиологии растений имени К. А. Тимирязева РАН, Москва, 23–27 ноября 2015 г. Москва : ИФР РАН, 2015a. С. 238–241. [Zheleznova S. N., Bobko N. I., Gevorgiz R. G., Nekhoroshev M. V. Balans zheleza v plotnoi kul’ture diatomovoi vodorosli Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin. In: Fundamental’nye i prikladnye problemy sovremennoi eksperimental’noi biologii rastenii : sbornik materialov Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiyem i shkoly dlya molodykh uchenykh, posvyashchennykh 125-letiyu Instituta fiziologii rastenii imeni K. A. Timiryazeva RAN, Moscow, 23–27 November, 2015. Moscow : IFR RAN, 2015a, pp. 238–241. (in Russ.)]
Железнова С. Н., Геворгиз Р. Г., Бобко Н. И., Лелеков А. С. Питательная среда для интенсивной культуры диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – перспективного объекта биотехнологий // Актуальная биотехнология. 2015b. № 3 (14). С. 46–48. [Zheleznova S. N., Gevorgiz R. G., Bobko N. I., Lelekov A. S. The culture medium for the intensive culture of diatomic alga Cylindrotheca closterium (Ehrenb.) Reimann et Lewin – promising biotech facility. Aktual’naya biotekhnologiya, 2015b, no. 3 (14), pp. 46–48. (in Russ.)]
Железнова С. Н. Продукционные характеристики морской диатомовой водоросли Cylindrotheca closterium (Ehrenb.) Reimann et Lewin в интенсивной культуре при различных источниках азота в питательной среде // Морской биологический журнал. 2019. Т. 4, № 1. С. 33–44. [Zheleznova S. N. Production characteristics of the diatom Cylindrotheca closterium (Ehrenb.) Reimann et Lewin grown in an intensive culture at various nitrogen sources in the medium. Morskoj biologicheskij zhurnal, 2019, vol. 4, no. 1, pp. 33–44. (in Russ.)]. https://doi.org/10.21072/mbj.2019.04.1.04
Железнова С. Н., Геворгиз Р. Г. Измерение плотности культур диатомовых водорослей различными методами // Актуальные вопросы биологической физики и химии. 2020. Т. 5, № 1. С. 201–207. [Zheleznova S. N., Gevorgiz R. G. Measurement of diatom cultures density by various methods. Aktual’nye voprosy biologicheskoi fiziki i khimii, 2020, vol. 5, no. 1, pp. 201–207. (in Russ.)]
Непрерывное культивирование микроорганизмов : пер. с англ. / под ред. И. Малека, З. Фенцля. Москва : Пищевая промышленность, 1968. 546 с. [Theoretical and Methodological Basis of Continuous Culture of Microorganisms : transl. from Engl. / I. Málek, Z. Fencl (Eds). Moscow : Pishchevaya promyshlennost’, 1968, 546 p. (in Russ.)]
Перт С. Дж. Основы культивирования микроорганизмов и клеток / пер. с англ. Т. А. Петровой, И. Н. Позмоговой ; под ред. И. Л. Работновой. Москва : Мир, 1978. 330 с. [Pirt S. J. Principles of Microbe and Cell Cultivation / transl. from Engl. by T. A. Petrova, I. N. Pozmogova ; I. L. Rabotnova (Ed.). Moscow : Mir, 1978, 330 p. (in Russ.)]
Тренкеншу Р. П. Простейшие модели роста микроводорослей. 2. Квазинепрерывная культура // Экология моря. 2005. Вып. 67. С. 98–110. [Trenkenshu R. P. Simplest models of microalgae growth. 2. Queasycontinuous culture. Ekologiya morya, 2005, iss. 67, pp. 98–110. (in Russ.)]. URL: https://repository.marine-research.ru/handle/299011/4659
Фенцл З. Теоретический анализ систем непрерывных культур // Непрерывное культивирование микроорганизмов: теоретические и методологические основы : пер. с англ. / под ред. И. Малека, З. Фенцля. Москва : Пищевая промышленность, 1968. С. 64–150. [Fencl Z. Theoretical analysis of continuous culture systems. In: Theoretical and Methodological Basis of Continuous Culture of Microorganisms : transl. from Engl. / I. Málek, Z. Fencl (Eds). Moscow : Pishchevaya promyshlennost’, 1968, pp. 64–150. (in Russ.)]
Abinandan S., Subashchandrabose S. R., Venkateswarlu K., Megharaj M. Nutrient removal and biomass production: Advances in microalgal biotechnology for wastewater treatment. Critical Reviews in Biotechnology, 2018, vol. 38, iss. 8, pp. 1244–1260. https://doi.org/10.1080/07388551.2018.1472066
Baldisserotto C., Sabia A., Ferroni L., Pancaldi S. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World Journal of Microbiology and Biotechnology, 2019, vol. 35, iss. 2, art. no. 35 (9 p.). https://doi.org/10.1007/s11274-019-2607-z
Bozarth A., Maier U.-G., Zauner S. Diatoms in biotechnology: Modern tools and applications. Applied Microbiology and Biotechnology, 2009, vol. 82, iss. 2, pp. 195–201. https://doi.org/10.1007/s00253-008-1804-8
de la Cuesta J. L., Manley S. L. Iodine assimilation by marine diatoms and other phytoplankton in nitrate-replete conditions. Limnology and Oceanography, 2009, vol. 54, iss. 5, pp. 1653–1664. https://doi.org/10.4319/lo.2009.54.5.1653
Creswell L. R. Phytoplankton Culture for Aquaculture Feed. [Stoneville, MS : Southern Regional Aquaculture Center], 2010, 13 p. (SRAC Publication ; no. 5004).
Guillard R. R. L., Ryther J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029
Guillard R. R. L. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrates Animals / M. L. Smith, M. H. Chanley (Eds). New York : Plenum Press, 1975, pp. 29–60. https://doi.org/10.1007/978-1-4615-8714-9_3
Herbert D., Elsworth R., Telling R. C. The continuous culture of bacteria; a theoretical and experimental study. The Journal of General Microbiology, 1956, vol. 14, iss. 3, pp. 601–622. https://doi.org/10.1099/00221287-14-3-601
Kiran M. T., Bhaskar M. V., Tiwari A. Phycoremediation of eutrophic lakes using diatom algae. In: Lake Sciences and Climate Change / M. N. Rashed (Ed). London : IntechOpen, 2016, pp. 103–115. https://doi.org/10.5772/64111
Lauritano C., Andersen J. H., Hansen E., Albrigtsen M., Escalera L., Esposito F., Helland K., Hanssen K. Ø., Romano G., Ianora A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Frontiers in Marine Science, 2016, vol. 3, art. no. 68 (12 p.). https://doi.org/10.3389/fmars.2016.00068
Lincoln R. A., Strupinski K., Walker J. M. Biologically active compounds from diatoms. Diatom Research, 1990, vol. 5, iss. 2, pp. 337–349. https://doi.org/10.1080/0269249X.1990.9705124
Lu X., Sun H., Zhao W., Cheng K.-W., Chen F., Liu B. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Marine Drugs, 2018, vol. 16, iss. 7, art. no. 219 (13 p.). https://doi.org/10.3390/md16070219
Maxon W. D. Continuous fermentation: A discussion of its principles and applications. Applied Microbiology, 1955, vol. 3, no. 2, pp. 110–122. https://doi.org/10.1128/am.3.2.110-122.1955
Methods in Microbiology / J. R. Norris, D. W. Ribbons (Eds). London ; New York : Academic Press, 1970, vol. 2, 445 p. https://doi.org/10.1016/S0580-9517(08)70210-1
Minyuk G. S., Chelebieva E. S., Chubchikova I. N. Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chodat) Petrova (Chlorophyta) in a two-stage culture. International Journal on Algae, 2014, vol. 16, iss. 4, pp. 354–368. https://doi.org/10.1615/InterJAlgae.v16.i4.50
Nagappan S., Devendran S., Tsai P.-C., Dahms H.-U., Ponnusamy V. K. Potential of two-stage cultivation in microalgae biofuel production. Fuel, 2019, vol. 252, pp. 339–349. https://doi.org/10.1016/j.fuel.2019.04.138
Patras D., Moraru C. V., Socaciu C. Screening of bioactive compounds synthesized by microalgae: A progress overview on extraction and chemical analysis. Studia Universitatis Babeș-Bolyai, Seria Chemia, 2018, vol. 63, iss. 1, pp. 21–35. http://dx.doi.org/10.24193/subbchem.2018.1.02
Salleh S., McMinn A. The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora cf. coffeaeformis and Cocconeis cf. sublittoralis (Bacillariophyceae). Journal of Phycology, 2011, vol. 47, iss. 6, pp. 1413–1424. https://doi.org/10.1111/j.1529-8817.2011.01079.x
Sathasivam R., Radhakrishnan R., Hashem A., Abd_Allah E. F. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 2019, vol. 26, iss. 4, pp. 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
Singh J., Dhar D. W. Overview of carbon capture technology: Microalgal biorefinery concept and state-of-the-art. Frontiers in Marine Science, 2019, vol. 6, art. no. 29 (9 p.). https://doi.org/10.3389/fmars.2019.00029
Stock W., Vanelslander B., Rüdiger F., Sabbe K., Vyverman W., Karsten U. Thermal niche differentiation in the benthic diatom Cylindrotheca closterium (Bacillariophyceae) complex. Frontiers in Microbiology, 2019, vol. 10, art. no. 1395 (12 p.). https://doi.org/10.3389/fmicb.2019.01395
Wang S., Chen J., Li Z., Wang Y., Fu B., Han X., Zheng L. Cultivation of the benthic microalga Prorocentrum lima for the production of diarrhetic shellfish poisoning toxins in a vertical flat photobioreactor. Bioresource Technology, 2015, vol. 179, pp. 243–248. https://doi.org/10.1016/j.biortech.2014.12.019
Wang S., Verma S. K., Said I. H., Thomsen L., Ullrich M. S., Kuhnert N. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial Cell Factories, 2018, vol. 17, art. no. 110 (13 p.). https://doi.org/10.1186/s12934-018-0957-0
Wollmann F., Dietze S., Ackermann J.‐U., Bley T., Walther T., Steingroewer J., Krujatz F. Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 2019, vol. 19, iss. 12, pp. 860–871. https://doi.org/10.1002/elsc.201900071
Zheleznova S. N., Gevorgiz R. G., Nekhoroshev M. V. Conditions optimization of the Cylindrotheca closterium (Ehrenberg) Reimann et Lewin cultivation in order to obtain a high yield of fucoxanthin. In: 3rd Russian Conference on Medicinal Chemistry, Kazan, 28 Sept. – 03 Oct., 2017 : abstr. book. Kazan : Kazan Federal University, 2017, pp. 261.