##plugins.themes.bootstrap3.article.main##

Soldatov A., Rychkova V., Kukhareva T. Morphometric characteristics of erythroid elements of Anadara kagoshimensis (Tokunaga, 1906) hemolymph under conditions of hydrogen sulfide loading. Marine Biological Journal, 2024, vol. 9, no. 1, pp. 98-107. https://doi.org/10.21072/mbj.2024.09.1.08

##plugins.themes.bootstrap3.article.details##

Abstract

The effect of hydrogen sulfide loading on the morphometric characteristics of erythroid elements of Anadara kagoshimensis (Tokunaga, 1906) hemolymph was studied experimentally. The work was carried out on adult molluscs with a shell height of 26–38 mm. Molluscs of the control group were kept in an aquarium with oxygen concentration of 7.0–7.1 mg O2·L−1 (normoxia). Molluscs of the experimental group were exposed to hydrogen sulfide loading created by Na2S donor dissolving in water to a final concentration of 6 mg S2−·L−1. A day later, the oxygen level in water amounted to 1.8 mg O2·L−1, and hydrogen sulfide was not detected. Some of molluscs were subjected to repeated hydrogen sulfide loading by Na2S adding up to a final concentration of 9 mg S2−·L−1. By the end of the second day, 1.9 mg S2−·L−1 and 0.03 mg O2·L−1 (trace oxygen concentration) were recorded in water. Under conditions of short-term hydrogen sulfide loading (the first day), the population of A. kagoshimensis erythroid elements became more heterogeneous. In the hemolymph, the content of micro- and macrocytes increased; the number of cells with an altered shape and low content of granular inclusions in the cytoplasm rose. The number of free hematin granules in the hemolymph significantly increased. The mean cell volume (Vc) rose by more than 20%. Exposure to increased concentration of sulfides for two days led to a noticeable decrease in Vc, which is determined by a significant reduction in the population of macrocytes in the hemolymph of molluscs.

Authors

A. Soldatov

chief researcher, D. Sc., Prof.

https://orcid.org/0000-0002-9862-123X

https://elibrary.ru/author_items.asp?id=638564

V. Rychkova

researcher

https://orcid.org/0000-0003-3797-715X

https://elibrary.ru/author_items.asp?id=764990

T. Kukhareva

senior researcher, PhD

https://orcid.org/0000-0001-7151-4402

https://elibrary.ru/author_items.asp?id=920990

References

Заика В. Е., Коновалов С. К., Сергеева Н. Г. Локальные и сезонные явления гипоксии на дне севастопольских бухт и их влияние на макробентос // Морской экологический журнал. 2011. Т. 10, № 3. С. 15–25. [Zaika V. E., Konovalov S. K., Sergeeva N. G. The events of local and seasonal hypoxia at the bottom of the Sevastopol bays and their influence on macrobenthos. Morskoj ekologicheskij zhurnal, 2011, vol. 10, no. 3, pp. 15–25. (in Russ.)]. https://repository.marine-research.ru/handle/299011/1167

Киселёва М. И. Сравнительная характеристика донных сообществ у берегов Кавказа // Многолетние изменения зообентоса Чёрного моря. Киев : Наукова думка, 1992. С. 84–99. [Kiseleva M. I. Sravnitel’naya kharakteristika donnykh soobshchestv u beregov Kavkaza. Mnogoletnie izmeneniya zoobentosa Chernogo morya. Kyiv : Naukova dumka, 1992, pp. 84–99. (in Russ.)]. https://repository.marine-research.ru/handle/299011/5644

Манских В. Н. Пути гибели клетки и их биологическое значение // Цитология. 2007. Т. 49, № 11. С. 909–915. [Manskikh V. N. Pathways of cell death and their biological importance. Tsitologiya, 2007, vol. 49, no. 11, pp. 909–915. (in Russ.)]

Новицкая В. Н., Солдатов А. А. Эритроидные элементы гемолимфы Anadara inaequivalvis (Mollusca: Arcidae) в условиях экспериментальной аноксии: функциональные и морфометрические характеристики // Морской экологический журнал. 2011. Т. 10, № 1. С. 56–64. [Novitskaja V. N., Soldatov A. A. Erythroid elements of hemolymph in Anadara inaequivalvis (Mollusca: Arcidae) under conditions of experimental anoxia: Functional and morphometric characteristics. Morskoj ekologicheskij zhurnal, 2011, vol. 10, no. 1, pp. 56–64. (in Russ.)]. https://repository.marine-research.ru/handle/299011/1138

Орехова Н. А., Коновалов С. К. Кислород и сульфиды в донных отложениях прибрежных районов севастопольского региона Крыма // Океанология. 2018. Т. 58, № 5. С. 739–750. [Orekhova N. A., Konovalov S. K. Oxygen and sulfides in bottom sediments of the coastal Sevastopol region of Crimea. Okeanologiya, 2018, vol. 58, no. 5, pp. 739–750. (in Russ.)]. https://doi.org/10.1134/S0030157418050106

Подымов О. И. Количественные оценки гидрохимических характеристик редокс-слоя Чёрного моря с помощью проблемно ориентированной базы данных : автореф. дис. … канд. физ.-мат. наук : 25.00.28. Москва, 2005. 21 с. [Podymov O. I. Kolichestvennye otsenki gidrokhimicheskikh kharakteristik redoks-sloya Chernogo morya s pomoshch’yu problemno orientirovannoi bazy dannykh : avtoref. dis. … kand. fiz.-mat. nauk : 25.00.28. Moscow, 2005, 21 p. (in Russ.)]

Ревков Н. К. Особенности колонизации Чёрного моря недавним вселенцем – двустворчатым моллюском Anadara kagoshimensis (Bivalvia: Arcidae) // Морской биологический журнал. 2016. Т. 1, № 2. С. 3–17. [Revkov N. K. Colonization’s features of the Black Sea basin by recent invader Anadara kagoshimensis (Bivalvia: Arcidae). Morskoj biologicheskij zhurnal, 2016, vol. 1, no. 2, pp. 3–17. (in Russ.)]. https://doi.org/10.21072/mbj.2016.01.2.01

Чижевский А. Л. Структурный анализ движущейся крови. Москва : Изд-во АН СССР, 1959. 474 с. [Chizhevsky A. L. Strukturnyi analiz dvizhushcheisya krovi. Moscow : Izd-vo AN SSSR, 1959, 474 p. (in Russ.)]

Arp A. J., Childress J. J. Blood function in the hydrothermal vent vestimentiferan tube worm. Science, 1981, vol. 213, no. 4505, pp. 342–344. https://doi.org/10.1126/science.213.4505.342

Arp A. J., Childress J. J. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science, 1983, vol. 219, no. 4582, pp. 295–297. https://doi.org/10.1126/science.219.4582.295

Bessman J. D. Red blood cell fragmentation: Improved detection and identification of causes. American Journal of Clinical Pathology, 1988, vol. 90, iss. 3, pp. 268–273. https://doi.org/10.1093/ajcp/90.3.268

Buck L. T. Succinate and alanine as anaerobic end-products in the diving turtle (Chrysemys picta bellii). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2000, vol. 126, iss. 3, pp. 409–413. https://doi.org/10.1016/s0305-0491(00)00215-7

Chew S. F., Gan J., Ip Y. K. Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud. Physiological and Biochemical Zoology, 2005, vol. 78, no. 4, pp. 620–629. https://doi.org/10.1086/430233

Cortesi P., Cattani O., Vitali G. Physiological and biochemical responses of the bivalve Scapharca inaequivalvis to hypoxia and cadmium exposure: Erythrocytes versus other tissues. In: Marine Coastal Eutrophication : proceedings of an International Conference, Bologna, Italy, 21–24 March, 1990. Amsterdam, the Netherlands : Elsevier, 1992, pp. 1041–1054. https://doi.org/10.1016/B978-0-444-89990-3.50090-0

Ferguson R. A., Boutilier R. G. Metabolic energy production during adrenergic pH regulation in red cells of the Atlantic salmon, Salmo salar. Respiration Physiology, 1988, vol. 74, iss. 1, pp. 65–76. https://doi.org/10.1016/0034-5687(88)90141-7

Fuller G. M., Shields D. Molecular Basis of Medical Cell Biology. Stamford, Connecticut : Appleton & Lange, 1998, 231 p.

Furuta E., Yamaguchi K. Haemolymph: Blood cell morphology and function. In: The Biology of Terrestrial Molluscs / G. M. Barker (Ed.). Wallingford, UK ; New York, USA : CABI Publishing, 2001, pp. 289–306. http://doi.org/10.1079/9780851993188.0289

Hochachka P. W., Somero G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford : Oxford University Press, 2002, 356 p.

Holden J. A., Pipe R. K., Quaglia A., Ciani G. Blood cells of the arcid clam, Scapharca inaequivalvis. Journal of the Marine Biological Association of the United Kingdom, 1994, vol. 74, iss. 2, pp. 287–299. https://doi.org/10.1017/S0025315400039333

Holk K. Effects of isotonic swelling on the intracellular Bohr factor and the oxygen affinity of trout and carp blood. Fish Physiology and Biochemistry, 1996, vol. 15, pp. 371–375. https://doi.org/10.1007/BF01875579

Houchin D. N., Munn J. I., Parnell B. L. A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area. Blood, 1958, vol. 13, no. 12, pp. 1185–1191. https://doi.org/10.1182/blood.V13.12.1185.1185

Isani G., Cattani O., Tacconi S. Energy metabolism during anaerobiosis and recovery in the posterior adductor muscle of the bivalve Scapharca inaequivalvis (Bruguière). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, vol. 93, iss. 1, pp. 193–200. https://doi.org/10.1016/0305-0491(89)90235-6

Jensen F. B., Fago A., Weber R. E. Hemoglobin structure and function. In: Fish Respiration / S. F. Perry, B. L. Tufts (Eds). San Diego, CA : Academic Press, 1998, pp. 1–40. (Fish Physiology ; vol. 17). https://doi.org/10.1016/S1546-5098(08)60257-5

Miyamoto Y., Iwanaga C. Effects of sulphide on anoxia-driven mortality and anaerobic metabolism in the ark shell Anadara kagoshimensis. Journal of the Marine Biological Association of the United Kingdom, 2017, vol. 97, iss. 2, pp. 329–336. https://doi.org/10.1017/S0025315416000412

Nakano T., Yamada K., Okamura K. Duration rather than frequency of hypoxia causes mass mortality in ark shells (Anadara kagoshimensis). Marine Pollution Bulletin, 2017, vol. 125, iss. 1–2, pp. 86–91. https://doi.org/10.1016/j.marpolbul.2017.07.073

Nikinmaa M., Cech J. J., Ryhänen L., Salama A. Red cell function of carp (Cyprinus carpio) in acute hypoxia. Experimental Biology, 1987, vol. 47, iss. 1, pp. 53–58.

Novitskaya V. N., Soldatov A. A. Peculiarities of functional morphology of erythroid elements of hemolymph of the bivalve mollusk Anadara inaequivalvis, the Black Sea. Hydrobiological Journal, 2013, vol. 49, iss. 6, pp. 64–71. https://doi.org/10.1615/hydrobj.v49.i6.60

Powell E. N., Crenshow M. A., Rieger R. W. Adaptations to sulfide in sulfide-system meiofauna. End-products of sulfide detoxification in three turbellarians and a gastrotrich. Marine Ecology Progress Series, 1980, vol. 2, pp. 169–177.

Salama A., Nikinmaa M. Effect of oxygen tension on catecholamine-induced formation of cAMP and on swelling of carp red blood cells. American Journal of Physiology–Cell Physiology, 1990, vol. 259, iss. 5, pt 1, pp. C723–C726. https://doi.org/10.1152/ajpcell.1990.259.5.c723

Soldatov A. A., Andreenko T. I., Sysoeva I. V., Sysoev A. A. Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. Journal of Evolutionary Biochemistry and Physiology, 2009, vol. 45, iss. 3, pp. 349–355. https://doi.org/10.1134/S002209300903003X

Soldatov A. A., Kukhareva T. A., Andreeva A. Y., Efremova E. S. Erythroid elements of hemolymph in Anadara kagoshimensis (Tokunaga, 1906) under conditions of the combined action of hypoxia and hydrogen sulfide contamination. Russian Journal of Marine Biology, 2018, vol. 44, iss. 6, pp. 452–457. https://doi.org/10.1134/S1063074018060111

Soldatov A., Kukhareva T., Morozova V., Richkova V., Andreyeva A., Bashmakova A. Morphometric parameters of erythroid hemocytes of alien mollusc Anadara kagoshimensis under normoxia and anoxia. Ruthenica, Russian Malacological Journal, 2021, vol. 31, no. 2, pp. 77–86. https://doi.org/10.35885/ruthenica.2021.31(2).3

Tufts B. In vitro evidence for sodium-dependent pH regulation in sea lamprey (Petromyzon marinus) red blood cell. Canadian Journal of Zoology, 1992, vol. 70, no. 3, pp. 411–416. http://doi.org/10.1139/z92-062

Val A. L., De Menezes G. C., Wood C. M. Red blood cell adrenergic responses in Amazonian teleosts. Journal of Fish Biology, 1997, vol. 52, iss. 1, pp. 83–93. https://doi.org/10.1111/j.1095-8649.1998.tb01554.x

Vismann B. Hematin and sulfide removal in hemolymph of the hemoglobin-containing bivalve Scapharca inaequivalvis. Marine Ecology Progress Series, 1993, vol. 98, pp. 115–122. http://doi.org/10.3354/meps098115

Funding

This work was carried out within the framework of IBSS state research assignment “Functional, metabolic, and molecular genetic mechanisms of marine organism adaptation to conditions of extreme ecotopes of the Black Sea, the Sea of Azov, and other areas of the World Ocean” (No. 124030100137-6).

Statistics

Downloads

Download data is not yet available.