##plugins.themes.bootstrap3.article.main##

Borovkov A., Gudvilovich I., Zhondareva Ya. Growth of cultures of marine microalgae Porphyridium purpureum and Tetraselmis viridis on modified nutrient media. Marine Biological Journal, 2024, vol. 9, no. 3, pp. 3-15. https://doi.org/10.21072/mbj.2024.09.3.01

##plugins.themes.bootstrap3.article.details##

Abstract

Marine species of microalgae are capable of synthesizing a wide range of biologically active substances and are currently considered as the most promising sources of such compounds. Nutrient media for cultivation of microalgae are mostly prepared based on natural or artificial seawater. Modifying the nutrient medium for cultivation of marine microalgae by replacing its natural seawater base with freshwater one seems promising. Unialgal cultures of the marine microalgae Porphyridium purpureum and Tetraselmis viridis were grown under conditions of replacing sterile seawater with freshwater, with sea salt added up to a concentration of 18 and 28 g·L−1 for T. viridis and P. purpureum, respectively. Based on experimental data obtained, production characteristics of P. purpureum and T. viridis batch cultures were determined when grown on freshwater-based and seawater-based nutrient media. In general, a change in the density of P. purpureum and T. viridis cultures during batch cultivation both on freshwater and seawater had a unidirectional character (correlation coefficients in both cases were 0.99), and the water base of the nutrient medium had no significant effect on their growth rate. As shown experimentally, the biomass yield of P. purpureum and T. viridis using freshwater as a base of the nutrient medium was 3.2–3.4 g of dry weight per 1 L of the culture and generally corresponded to the similar parameter of cultures grown using seawater. Despite the fact that the mean growth rate of T. viridis cultured in freshwater did not differ significantly from the growth rate of the microalga cultured in seawater, higher mean rates of pigment synthesis and their total accumulation were observed in the culture grown in seawater. In the case of P. purpureum, the water base of the nutrient medium had no noticeable effect on B-phycoerythrin synthesis rate and content of this pigment in the culture and biomass of the microalga. The obtained results show that cultures of marine microalgae P. purpureum and T. viridis can be successfully grown without using natural seawater. It significantly reduces labor costs and biomass production costs; also, it expands geographical perspectives for their mass cultivation.

Authors

A. Borovkov
leading researcher, head of the department, PhD

https://orcid.org/0000-0001-6612-491X

https://elibrary.ru/author_items.asp?id=760551

I. Gudvilovich
senior researcher, PhD

https://orcid.org/0000-0001-7412-8283

https://elibrary.ru/author_items.asp?id=811962

Ya. Zhondareva
junior researcher

https://orcid.org/0000-0003-0397-8162

https://elibrary.ru/author_items.asp?id=887597

References

Боровков А. Б., Геворгиз Р. Г. Продуктивность микроводорослей Spirulina platensis и Tetraselmis viridis при использовании различных методов культивирования // Экология моря. 2005. Вып. 70. С. 9–13. [Borovkov A. B., Gevorgiz R. G. Production of Spirulina platensis and Tetraselmis viridis by different methods of cultivation. Ekologiya morya, 2005, iss. 70, pp. 9–13. (in Russ.)]. https://repository.marine-research.ru/handle/299011/4698

Гудвилович И. Н., Боровков А. Б. Продуктивность микроводоросли Dunaliella salina Teod. при различных способах внесения углекислого газа в культуру // Морской биологический журнал. 2017. Т. 2, № 2. С. 34–40. [Gudvilovych I. N., Borovkov A. B. Dunaliella salina Teod. microalgae productivity, when grown under the different addition of carbon dioxide in culture. Morskoj biologicheskij zhurnal, 2017, vol. 2, no. 2, pp. 34–40. (in Russ.)]. https://doi.org/10.21072/mbj.2017.02.2.03

Методы физиолого-биохимического исследования водорослей в гидробиологической практике. Киев : Наукова думка, 1975. 247 с. [Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v gidrobiologicheskoi praktike. Kyiv : Naukova dumka, 1975, 247 p. (in Russ.)]

Минюк Г. С., Дробецкая И. В., Чубчикова И. Н., Терентьева Н. В. Одноклеточные водоросли как возобновляемый биологический ресурс: обзор // Морской экологический журнал. 2008. Т. 7, № 2. С. 5–23. [Minyuk G. S., Drobetskaya I. V., Chubchikova I. N., Terentyeva N. V. Unicellular algae as renewable biological resource: A review. Morskoj ekologicheskij zhurnal, 2008, vol. 7, no. 2, pp. 5–23. (in Russ.)]. https://repository.marine-research.ru/handle/299011/956

Стадничук И. Н. Фикобилипротеины. Москва : ВИНИТИ, 1990. 193 с. (Итоги науки и техники. Серия: Биологическая химия ; т. 40). [Stadnichuk I. N. Fikobiliproteiny. Moscow : VINITI, 1990, 193 p. (Itogi nauki i tekhniki. Seriya: Biologicheskaya khimiya ; vol. 40). (in Russ.)]

Тренкеншу Р. П., Терсков И. А., Сидько Ф. Я. Плотные культуры морских микроводорослей // Известия Сибирского отделения Академии наук СССР. 1981. № 5. С. 75–82. (Серия биологических наук ; вып. 1). [Trenkenshu R. P., Terskov I. A., Sidko F. Ya. Plotnye kul’tury morskikh mikrovodoroslei. Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR, 1981, no. 5, pp. 75–82. (Seriya biologicheskikh nauk ; iss. 1). (in Russ.)]

Упитис В. В., Пакалне Д. С., Шулце И. Ф. Оптимизация минерального питания красной морской водоросли Porphyridium cruentum // Известия Академии наук Латвийской ССР. 1989. Т. 505, № 8. С. 95–104. [Upitis V. V., Pakalne D. S., Shultse I. F. Optimizatsiya mineral’nogo pitaniya krasnoi morskoi vodorosli Porphyridium cruentum. Izvestiya Akademii nauk Latviiskoi SSR, 1989, vol. 505, no. 8, pp. 95–104. (in Russ.)]

Barka A., Blecker C. Microalgae as a potential source of single-cell proteins. A review. Biotechnology, Agronomy, Society and Environment, 2016, vol. 20, no. 3, pp. 427–436. https://doi.org/10.25518/1780-4507.13132

Borovkov A. B., Gudvilovich I. N., Lelekov A. S., Avsiyan A. L. Effect of specific irradiance on productivity and pigment and protein production of Porphyridium purpureum (Rhodophyta) semi-continuous culture. Bioresource Technology, 2023, vol. 374, art. no. 128771 (11 p.). https://doi.org/10.1016/j.biortech.2023.128771

Borowitzka M. A. High-value products from microalgae – their development and commercialization. Journal of Applied Phycology, 2013, vol. 25, iss. 3, pp. 743–756. https://doi.org/10.1007/s10811-013-9983-9

Chen C. Y., Durbin E. G. Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 1994, vol. 109, pp. 83–94. https://doi.org/10.3354/meps109083

Chauton M. S., Reitan K. I., Norsker N. H., Tveterås R., Kleivdal H. T. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities. Aquaculture, 2015, vol. 436, pp. 95–103. https://doi.org/10.1016/j.aquaculture.2014.10.038

Fuentes-Grunewald C., Bayliss C., Zanain M., Pooley C., Scolamacchia M., Silkina A. Evaluation of batch and semi-continuous culture of Porphyridium purpureum in a photobioreactor in high latitudes using Fourier transform infrared spectroscopy for monitoring biomass composition and metabolites production. Bioresource Technology, 2015, vol. 189, pp. 357–363. https://doi.org/10.1016/j.biortech.2015.04.042

Gaignard C., Gargouch N., Dubessay P., Delattre C., Pierre G., Laroche C., Fendri I., Abdelkafi S., Michaud P. New horizons in culture and valorization of red microalgae. Biotechnology Advances, 2019, vol. 37, iss. 1, pp. 193–222. https://doi.org/10.1016/j.biotechadv.2018.11.014

Gargouch N., Karkouch I., Elleuch J., Elkahoui S., Michaud P., Abdelkafi S., Laroche C., Fendri I. Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications. International Journal of Biological Macromolecules, 2018, vol. 120, pt B, pp. 2106–2114. https://doi.org/10.1016/j.ijbiomac.2018.09.037

Geada P., Moreira C., Silva M., Nunes R., Madureira L., Rocha C. M. R., Pereira R. N., Vicente A. A., Teixeira J. A. Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology, 2021, vol. 332, art. no. 125125 (14 p.). https://doi.org/10.1016/j.biortech.2021.125125

Gudvilovich I. N., Lelekov A. S., Maltsev E. I., Kulikovskii M. S., Borovkov A. B. Growth of Porphyridium purpureum (Porphyridiales, Rhodophyta) and production of B-phycoerythrin under varying illumination. Russian Journal of Plant Physiology, 2021, vol. 68, iss. 1, pp. 188–196. https://doi.org/10.1134/S1021443720060059

Kathiresan S., Sarada R., Bhattacharya S., Ravishankar A. Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum. Biotechnology and Bioengineering, 2006, vol. 96, iss. 3, pp. 456–463. https://doi.org/10.1002/bit.21138

Khalil Z. I., Asker M. M. S., El-Sayed S., Kobbia I. A. Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology and Biotechnology, 2010, vol. 26, iss. 7, pp. 1225–1231. https://doi.org/10.1007/s11274-009-0292-z

Kumar S. S., Saramma A. V. Effect of salinity and pH ranges on the growth and biochemical composition of marine microalga Nannochloropsis salina. International Journal of Agriculture, Environment and Biotechnology, 2018, vol. 11, no. 4, pp. 651–660. https://doi.org/10.30954/0974-1712.08.2018.6

Lelekov A. S., Gevorgiz R. G., Zhondareva Y. D. Production characteristics of Phaeodactylum tricornutum Bohlin grown on medium with artificial sea water. Applied Biochemistry and Microbiology, 2016, vol. 52, iss. 3, pp. 331–335. https://doi.org/10.1134/S0003683816030091

Li S., Ji L., Shi Q., Wu H., Fan J. Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. Bioresource Technology, 2019, vol. 292, art. no. 122048 (16 p.). https://doi.org/10.1016/j.biortech.2019.122048

Li T., Xu J., Wu H., Jiang P., Chen Z., Xiang W. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine Drugs, 2019, vol. 17, iss. 2, art. no. 124 (16 p.). https://doi.org/10.3390/md17020124

López-Elías J. A., Enriquez-Ocana F., Pablos-Mitre M. N., Huerta-Aldaz N., Leal S., Miranda-Baeza A., Nieves-Soto M., Vásquez-Salgado I. Growth and biomass production of Chaetoceros muelleri in mass outdoor cultures: Effect of the hour of the inoculation, size of the inoculum and culture medium. Revista de Investigaciones Marinas, 2008, vol. 29, no. 2, pp. 171–177.

Ma M., Hu Q. Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Reviews in Aquaculture, 2024, vol. 16, iss. 2, pp. 818–835. https://doi.org/10.1111/raq.12869

Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 2016, vol. 109, pp. 282–296. https://doi.org/10.1016/J.BEJ.2016.01.025

Qiu R., Gao S., Lopez P. A., Ogden K. L. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 2017, vol. 28, pp. 192–199. https://doi.org/10.1016/j.algal.2017.11.004

Raes E. J., Isdepsky A., Muylaert K., Borowitzka M. A., Moheimani N. R. Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. Journal of Applied Phycology, 2013, vol. 26, iss. 1, pp. 247–255. https://doi.org/10.1007/s10811-013-0077-5

Strizh I. G., Popova L. G., Balnokin Yu. V. Physiological aspects of adaptation of the marine microalga Tetraselmis (Platymonas) viridis to various medium salinity. Russian Journal of Plant Physiology, 2004, vol. 51, iss. 2, pp. 176–182. https://doi.org/10.1023/B:RUPP.0000019210.59579.6b

Tredici M. R., Biondi N., Ponis E., Rodolfi L., Chini Zittelli G. Advances in microalgal culture for aquaculture feed and other uses. In: New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management / G. Burnell, G. Allan (Eds). Cambridge : Woodhead Publishing, 2009, pp. 610–676. https://doi.org/10.1533/9781845696474.3.610

Wellburn A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994, vol. 144, iss. 3, pp. 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

Funding

This work was carried out within the framework of IBSS state research assignment “Comprehensive study of the functioning mechanisms of marine biotechnological complexes with the aim of obtaining bioactive substances from hydrobionts” (No. 124022400152-1) and “Comprehensive study of ecological, physiological, and biochemical features of microalgae of various taxonomic groups during adaptation to changing environments” (No. 124021300070-2).

Statistics

Downloads

Download data is not yet available.