Cultural study of micromycetes from deep-sea bottom sediments of the Adriatic Sea
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
For the first time, taxonomic composition of fungi and features of structure of their complexes were identified for horizons down to 30 cm below the water–bottom boundary in deep-sea bottom sediments of the Adriatic Sea. A 0–30-cm core of bottom sediments was sampled on 18.10.2007 from aboard the RV “Palagruža” (Croatia) with a column sampler of a QUEST 4000 remotely operated vehicle at a 1,020-m depth (41°43′13″N, 17°34′19″E). The sample of gray silt was cut into 30 sections, each 1 cm thick. Fungi were isolated on Czapek agar and Sabouraud agar, two replicates on each medium, under aerobic conditions, at +18 °C, with chloramphenicol 3% alcohol solution added (1 mL per 1 L of a medium). Abundance of fungal colony-forming units (CFU) was calculated per 1 g of dry sediment. Sixteen taxa were found; 12 were identified down to the species level, and 4, to the genus level. The taxa were assigned to 13 genera, 8 families, 7 orders, and 5 classes of the phyla Ascomycota and Basidiomycota; sterile mycelium was identified as well. Fungi were not recorded in a horizon of 0–1 cm. Maximum abundance of fungi was 4,300 CFU·g−1 dry sediment (a horizon of 6–7 cm). Maximum number of taxa, 6, was revealed for a horizon of 14–15 cm. In the sample studied, 87.5% of fungal species belonged to Ascomycota. Based on literature data, we compiled a list of fungal species known for various sediment horizons of the Atlantic, Indian, and Pacific oceans and the Black Sea. This list was used to calculate two indices, Δ+ (average taxonomic distinctness index, AvTD) and Λ+ (variation in taxonomic distinctness index, VarTD), and to plot graphs. The analysis showed the similarity of mycobiota structure of the water basins as evidenced by values of the indices within the 95% confidence interval. Close values of the indices are due to the prevalence of fungal species representing the classes Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Saccharomycetes; those account for 73.13% (the Indian Ocean) to 87.50% (the Black and Adriatic seas) of the species composition.
Authors
References
Билай В. И., Коваль Э. З. Аспергиллы : определитель. Киев : Наукова думка, 1988. 204 с. [Bilai V. I., Koval’ E. Z. Aspergilly : opredelitel’. Kyiv : Naukova dumka, 1988, 204 p. (in Russ.)]
Копытина Н. И., Бочарова Е. А., Гулина Л. В. Новые находки культивируемых микромицетов в глубоководных отложениях Чёрного моря // Труды Института биологии внутренних вод им. И. Д. Папанина РАН. 2024. № 105 (108). С. 45–53. [Kopytina N., Bocharova E., Gulina L. New findings of cultured micromycetes in the deep-sea sediments of the Black Sea. Trudy Instituta biologii vnutrennikh vod im. I. D. Papanina RAN, 2024, no. 105 (108), pp. 45–53. (in Russ.)]. https://doi.org/10.47021/0320-3557-2024-45-53
Кураков А. В., Лаврентьев Р. Б., Нечитайло Т. Ю., Голышин П. Н., Звягинцев Д. Г. Разнообразие факультативно-анаэробных мицелиальных микроскопических грибов в почвах // Микробиология. 2008. Т. 77, № 1. С. 103–112. [Kurakov A. V., Lavrent’ev R. B., Nechitailo T. Yu., Golyshin P. N., Zvyagintsev D. G. Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Mikrobiologiya, 2008, vol. 77, no. 1, pp. 103–112. (in Russ.)]
Кураков А. В., Хидиров К. С., Садыкова В. С., Звягинцев Д. Г. Способность к анаэробному росту и активность спиртового брожения у микроскопических грибов // Прикладная биохимия и микробиология. 2011. Т. 47, № 2. С. 187–193. [Kurakov A. V., Khidirov K. S., Sadykova V. S., Zvyagintsev D. G. Anaerobic growth ability and alcohol fermentation activity of microscopic fungi. Prikladnaya biokhimiya i mikrobiologiya, 2011, vol. 47, no. 2, pp. 187–193. (in Russ.)]
Методы экспериментальной микологии : справочник. Киев : Наукова думка, 1982. 550 с. [Metody eksperimental’noi mikologii : spravochnik. Kyiv : Naukova dumka, 1982, 550 p. (in Russ.)]
Atlas of Clinical Fungi. 2nd ed. / G. S. de Hoog, J. Guarro, J. Gene, M. J. Figueras (Eds). Utrecht : Centraalbureau voor Schimmelcultures, 2000, 1126 p.
Barone G., Rastelli E., Corinaldesi C., Tangherlini M., Danovaro R., Dell’Anno A. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Progress in Oceanography, 2018, vol. 168, pp. 57–64. https://doi.org/10.1016/j.pocean.2018.09.011
Clarke K. R., Gorley R. N., Somerfield P. J., Warwick R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 3ʳᵈ ed. Plymouth : PRIMER-E, 2014, 260 p.
Damare S., Raghukumar C., Raghukumar S. Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Research Part I: Oceanographic Research Papers, 2006, vol. 53, iss. 1, pp. 14–27. https://doi.org/10.1016/j.dsr.2005.09.005
Edgcomb V. P., Kysela D. T., Teske A., de Vera Gomez A., Sogin M. L. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proceedings of the National Academy of Sciences, 2002, vol. 99, no. 11, pp. 7658–7662. https://doi.org/10.1073/pnas.062186399
Florio Furno M., Poli A., Ferrero D., Tardelli F., Manzini C., Oliva M., Pretti C., Campani T., Casini S., Fossi M. C., Varese G. C., Prigione V. The culturable mycobiota of sediments and associated microplastics: From a harbor to a marine protected area, a comparative study. Journal of Fungi, 2022, vol. 8, iss. 9, art. no. 927 (18 p.). https://doi.org/10.3390/jof8090927
Index Fungorum / Royal Botanic Gardens, Kew : [site]. URL: https://www.kew.org/science [accessed: 23.04.2024].
Jebaraj C. S., Raghukumar C., Behnke A., Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiology Ecology, 2010, vol. 71, iss. 3, pp. 399–412. https://doi.org/10.1111/j.1574-6941.2009.00804.x
Keeler E., Burgaud G., Teske A., Beaudoin D., Mehiri M., Dayras M., Cassand J., Edgcomb V. Deep-sea hydrothermal vent sediments reveal diverse fungi with antibacterial activities. FEMS Microbiology Ecology, 2021, vol. 97, iss. 8, art. no. fiab103 (20 p.). https://doi.org/10.1093/femsec/fiab103
Kiel Reese B., Sobol M. S., Bowles M. W., Hinrichs K.-U. Redefining the subsurface biosphere: Characterization of fungi isolated from energy-limited marine deep subsurface sediment. Frontiers in Fungal Biology, 2021, vol. 2, art. no. 727543 (19 p.). https://doi.org/10.3389/ffunb.2021.727543
Lipej L., Kovačić M., Dulčić J. An analysis of Adriatic ichthyofauna–ecology, zoogeography, and conservation status. Fishes, 2022, vol. 7, iss. 2, art. no. 58 (29 p.). https://doi.org/10.3390/fishes7020058
Muntañola-Cvetković M., Ristanović B. A mycological survey of the South Adriatic Sea. Journal of Experimental Marine Biology and Ecology, 1980, vol. 43, iss. 3, pp. 193–206. https://doi.org/10.1016/0022-0981(80)90047-7
Pachiadaki M. G., Rédou V., Beaudoin D. J., Burgaud G., Edgcomb V. P. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Frontiers in Microbiology, 2016, vol. 7, art. no. 846 (16 p.). https://doi.org/10.3389/fmicb.2016.00846
Raghukumar C., Damare S. R., Singh P. A review on deep-sea fungi: Occurrence, diversity and adaptations. Botanica Marina, 2010, vol. 53, no. 6, pp. 479–492. https://doi.org/10.1515/bot.2010.076
Raghukumar C., Raghukumar S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquatic Microbial Ecology, 1998, vol. 15, no. 2, pp. 153–163. https://doi.org/10.3354/ame015153
Ristanović B., Muntañola-Cvetković M., Munjko I. Phenoldegrading fungi from South Adriatic Sea and Lake Skadar. European Journal of Applied Microbiology and Biotechnology, 1975, vol. 1, iss. 4, pp. 313–322. https://doi.org/10.1007/BF01382690
Rojas-Jimenez K., Grossart H.-P., Cordes E., Cortés J. Fungal communities in sediments along a depth gradient in the Eastern Tropical Pacific. Frontiers in Microbiology, 2020, vol. 11, art. no. 575207 (9 p.). https://doi.org/10.3389/fmicb.2020.575207
Rédou V., Ciobanu M. C., Pachiadaki M. G., Edgcomb V., Alain K., Barbier G., Burgaud G. In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiology Ecology, 2014, vol. 90, iss. 3, pp. 908–921. https://doi.org/10.1111/1574-6941.12447
Rédou V., Navarri M., Meslet-Cladière L., Barbier G., Burgaud G. Species richness and adaptation of marine fungi from deep-subseafloor sediments. Applied and Environmental Microbiology, 2015, vol. 81, no. 10, pp. 3571–3583. https://doi.org/10.1128/AEM.04064-14
Vargas-Gastélum L., Riquelme M. The mycobiota of the deep sea: What omics can offer. Life, 2020, vol. 10, iss. 11, art. no. 292 (18 p.). https://doi.org/10.3390/life10110292
Wang Y. T., Xue Y. R., Liu C. H. A brief review of bioactive metabolites derived from deep-sea fungi. Marine Drugs, 2015, vol. 13, iss. 8, pp. 4594–4616. https://doi.org/10.3390/md13084594
Wang Z.-P., Liu Z.-Z., Wang Y.-L., Bi W.-H., Liu L., Wang H.-Y., Zheng Y., Zhang L.-L., Hu S.-G., Xu S.-S., Zhang P. Fungal community analysis in seawater of the Mariana Trench as estimated by Illumina HiSeq. RSC Advances, 2019, vol. 9, no. 12, pp. 6956–6964. https://doi.org/10.1039/c8ra10142f
Xu W., Gao Y., Gong L., Li M., Pang K.-L., Luo Z.-H. Fungal diversity in the deep-sea hadal sediments of the Yap Trench by cultivation and high throughput sequencing methods based on ITS rRNA gene. Deep Sea Research Part I: Oceanographic Research Papers, 2019, vol. 145, pp. 125–136. https://doi.org/10.1016/j.dsr.2019.02.001
Xu W., Gong L., Pang K.-L., Luo Z.-H. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep Sea Research Part I: Oceanographic Research Papers, 2018, vol. 131, pp. 16–26. https://doi.org/10.1016/j.dsr.2017.11.001
Xu W., Pang K.-L., Luo Z.-H. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microbial Ecology, 2014, vol. 68, pp. 688–698. https://doi.org/10.1007/s00248-014-0448-8
Zaitsev Y. P., Polikarpov G. G. Recently discovered new biospheric pelocontour function in the Black Sea reductive bathyal zone. Journal of the Black Sea / Mediterranean Environment, 2008, vol. 14, no. 3, pp. 151–165.
Zhang T., Wang N. F., Zhang Y. Q., Liu H. Y., Yu L. Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Scientific Reports, 2015, vol. 5, art. no. 14524 (11 p.). https://doi.org/10.1038/srep14524
Zhang X., Tang G., Xu X., Nong X., Qi S.-H. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One, 2014, vol. 9, iss. 10, art. no. e109118 (11 p.). https://doi.org/10.1371/journal.pone.0109118
Zhang X.-Y., Wang G.-H., Xu X.-Y., Nong X.-H., Wang J., Amin M., Qi S.-H. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep Sea Research Part I: Oceanographic Research Papers, 2016, vol. 116, pp. 99–105. https://doi.org/10.1016/j.dsr.2016.08.004
Zhou Y., Gao X., Shi C., Li M., Jia W., Shao Z., Yan P. Diversity and antiaflatoxigenic activities of culturable filamentous fungi from deep-sea sediments of the South Atlantic Ocean. Mycobiology, 2021, vol. 49, iss. 2, pp. 151–160. https://doi.org/10.1080/12298093.2020.1871175