##plugins.themes.ibsscustom.article.main##

##plugins.themes.ibsscustom.article.details##

Abstract

Diatoms of the genus Pseudo-nitzschia H. Peragallo, 1900, known as producers of the neurotoxic domoic acid, regularly cause algal blooms in the Russian Far Eastern seas. Temperature is an important factor affecting diatom blooms; however, its effect on the growth of this group of microalgae from the Sea of Japan has not been sufficiently studied. In this regard, growth characteristics of two diatom species were investigated in laboratory culture within the temperature range of +5 to +20 °C. The test involved direct counting in a Nageotte chamber. Cell density, growth rates, and generation time were evaluated. As found, the maximum average density of P. fraudulenta reached 2.2 × 105 cells·L−1 on the 16th day of the experiment at +18 °C. For this species, at +18 °C, the growth rate (0.11–0.16 div.·day−1) remained relatively high, and the generation time (4.4–6.7 days) was relatively low for most of the test. The maximum mean density of P. hasleana, 5 × 105 cells·L−1, was recorded on the 16th day of the experiment at +17 °C. For this species, high growth rate (0.2–0.92 div.·day−1) and low generation time (0.8–3.6 days) were recorded at +17 °C from the 2nd to the 10th day of the test. The average densities of P. fraudulenta and P. hasleana were statistically significantly higher at +17 °C and +18 °C, respectively, than at the other temperatures studied (Tukey’s test, p < 0.05). As recorded, when P. fraudulenta clones were grown at +10, +16, and +18 °C, and when P. hasleana clones were cultured at +14, +17, and +20 °C, their cells remained viable and continued to divide. When the cultivation temperature for P. fraudulenta and P. hasleana was lowered to +5 and +7 °C, respectively, division slowed down dramatically, and cell density was statistically significantly lower than at higher temperatures (Tukey’s test, p < 0.05). Ranges of tolerant temperature during P. fraudulenta and P. hasleana cultivation were found to be within +10…+18 °C and +14…+17 °C, respectively. The revealed lower temperature tolerance limits for the two species during cultivation (+10 and +14 °C) corresponded to water temperatures under which P. fraudulenta and P. hasleana blooms were observed in the natural environment (+6…+16 and +10…+16 °C, respectively). The study demonstrated the broad adaptive potential of the investigated species to temperature changes.

Authors

A. Zinov

junior researcher

https://orcid.org/0000-0003-4705-5941

https://elibrary.ru/author_items.asp?id=1071767

I. Stonik

senior researcher, PhD

https://orcid.org/0000-0003-1467-0374

https://elibrary.ru/author_items.asp?id=89169

References

Заика В. Е. Удельная продукция водных беспозвоночных. Киев : Наукова думка, 1972. 147 с. [Zaika V. E. Specific Production of Aquatic Invertebrates. Kyiv : Naukova dumka, 1972, 147 p. (in Russ.)]. https://repository.marine-research.ru/handle/299011/1127

Клочкова В. С., Лелеков А. С. Исследование влияния температуры на удельную скорость роста культуры Arthrospira platensis // Труды Карадагской научной станции имени Т. И. Вяземского – природного заповедника РАН. 2022. № 1 (21). С. 40–50. [Klochkova V. S., Lelekov A. S. Study of the temperature effect on the specific growth rate of Arthrospira platensis culture. Trudy Karadagskoi nauchnoi stantsii imeni T. I. Vyazemskogo – prirodnogo zapovednika RAN, 2022, no. 1 (21), pp. 40–50. (in Russ.)]. https://doi.org/10.21072/eco.2022.21.05

Кузьмин Д. В. Разработка платформы по получению биологически активных соединений из фотосинтезирующих микроорганизмов : автореф. дис. … д-ра биол. наук : 1.5.6 / Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии. Долгопрудный, 2025. 47 с. [Kuzmin D. V. Razrabotka platformy po polucheniyu biologicheski aktivnykh soedinenii iz fotosinteziruyushchikh mikroorganizmov : avtoref. dis. … d-ra biol. nauk : 1.5.6 / Vserossiiskii nauchno-issledovatel’skii institut sel’skokhozyaistvennoi biotekhnologii. Dolgoprudny, 2025, 47 p. (in Russ.)]

Морской биобанк. Ресурсная коллекция. Центр коллективного пользования / Национальный научный центр морской биологии Дальневосточного отделения Российской академии наук : [сайт]. Владивосток, 2024. [Marine Biobank. Resource Collection. Core Shared Research Facility / National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences : [site]. Vladivostok, 2024. (in Russ.)]. URL: https://marbank.dvo.ru/index.php/ru/ [accessed: 25.11.2024].

Рябушко Л. И., Бесиктепе С., Едигер Д., Илмаз Д., Зенгинер А., Рябушко В. И., Ли Р. И. Токсичная диатомовая водоросль Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle из Чёрного моря: морфология, таксономия, экология // Морской экологический журнал. 2008. Т. 7, № 3. С. 51–60. [Ryabushko L. I., Besiktepe S., Ediger D., Yilmaz D., Zenginer A., Ryabushko V. I., Lee R. I. Toxic diatom of Pseudo-nitzschIa calliantha Lundholm, Moestrup et Hasle from the Black Sea: Morphology, taxonomy, ecology. Morskoj ekologicheskij zhurnal, 2008, vol. 7, no. 3, pp. 51–60. (in Russ.)]. https://repository.marine-research.ru/handle/299011/973

Стоник И. В., Орлова Т. Ю. Продуценты домоевой кислоты рода Pseudo-nitzschia H. Peragallo, 1900 (Bacillariophyta) из северной части Тихого океана // Биология моря. 2018. Т. 44, № 5. С. 299–306. [Stonik I. V., Orlova T. Y. Domoic acid–producing diatoms of the genus Pseudo-nitzschia H. Peragallo, 1900 (Bacillariophyta) from the North Pacific. Biologiya morya, 2018, vol. 44, no. 5, pp. 299–306. (in Russ.)]. https://doi.org/10.1134/S0134347518050017

Фёдоров В. Д. О методах изучения фитопланктона и его активности : [учебное пособие]. Москва : Изд-во Моск. ун-та, 1979. 167 с. [Fedorov V. D. O metodakh izucheniya fitoplanktona i ego aktivnosti : [uchebnoe posobie]. Moscow : Izd-vo Mosk. un-ta, 1979, 167 p. (in Russ.)]

Ajani P., Murray S., Hallegraef G., Brett S., Armand L. First reports of Pseudo-nitzschia micropora and P. hasleana (Bacillariaceae) from the Southern Hemisphere: Morphological, molecular and toxicological characterization. Phycological Research, 2013, vol. 61, iss. 3, pp. 237–248. https://doi.org/10.1111/pre.12020

Ayache N., Lundholm N., Gai F., Hervé F., Amzil Z., Caruana A. Impacts of ocean acidification on growth and toxin content of the marine diatoms Pseudo-nitzschia australis and P. fraudulenta. Marine Environmental Research, 2021, vol. 169, art. no. 105380 (9 p.). https://doi.org/10.1016/j.marenvres.2021.105380

Bates S., Hubbard A., Lundholm N., Montresor M. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae, 2018, vol. 79, pp. 3–43. https://doi.org/10.1016/j.hal.2018.06.001

Claquin P., Probert I., Lefebvre S., Véron B. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquatic Microbial Ecology, 2008, vol. 51, no. 1, pp. 1–11. https://doi.org/10.3354/ame01187

Davison I. R., Greene R. M., Podolak E. J. Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Marine Biology, 1991, vol. 110, iss. 3, pp. 449–454. https://doi.org/10.1007/bf01344363

Delegrange A., Lefebvre A., Gohin F., Courcot L., Vincent D. Pseudo-nitzschia sp. diversity and seasonality in the southern North Sea, domoic acid levels and associated phytoplankton communities. Estuarine, Coastal and Shelf Science, 2018, vol. 214, pp. 194–206. https://doi.org/10.1016/j.ecss.2018.09.030

Evans K. M., Kuhn S. F., Hayes P. K. High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. Journal of Phycology, 2005, vol. 41, iss. 3, pp. 506–514. https://doi.org/10.1111/j.1529-8817.2005.00084.x

Fehling J., Davidson K., Bolch C., Tett P. Seasonality of Pseudo-nitzschia spp. (Bacillariophyceae) in western Scottish waters. Marine Ecology Progress Series, 2006, vol. 323, pp. 91–105. https://doi.org/10.3354/meps323091

Fu F. X., Tatters A. O., Hutchins D. A. Global change and the future of harmful algal blooms in the ocean. Marine Ecology Progress Series, 2012, vol. 470, pp. 207–233. https://doi.org/10.3354/meps10047

Gai F. F., Hedemand C. K., Louw D. C., Grobler K., Krock B., Moestrup Ø., Lundholm N. Morphological, molecular and toxigenic characteristics of Namibian Pseudo-nitzschia species – including Pseudo-nitzschia bucculenta sp. nov. Harmful Algae, 2018, vol. 76, pp. 80–95. https://doi.org/10.1016/j.hal.2018.05.003

Guillard R. R. L., Ryther J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029

Hasle G. R. Nitzschia and Fragilariopsis species studied in the light and electron microscopes. II. The group Pseudo-nitzschia. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo. Matematisk-Naturvitenskapelig Klasse Ny Serie, 1965, vol. 18, pp. 1–45.

Jones R. F., Speen H. L., Kury W. Studies on the growth of the red alga Porphyridium cruentum. Physiologia Plantarum, 1963, vol. 16, iss. 3, pp. 636–643. https://doi.org/10.1111/j.1399-3054.1963.tb08342.x

Liu C., Ji Y., Zhang L., Qiu J., Wang Z., Liu L., Zhuang Y., Chen T., Li Y., Niu B., Li A. Spatial distribution and source of biotoxins in phytoplankton from the South China Sea, China. Journal of Hazardous Materials, 2021, vol. 418, art. no. 126285 (10 p.). https://doi.org/10.1016/j.jhazmat.2021.126285

Orlova T. Yu., Stonik I. V., Aizdaicher N. A., Bates S. S., Léger C., Fehling J. Toxicity, morphology and distribution of Pseudonitzschia calliantha, P. multistriata and P. multiseries (Bacillariophyta) from the northwestern Sea of Japan. Botanica Marina, 2008, vol. 51, no. 4, pp. 297–306. https://doi.org/10.1515/bot.2008.035

Raven J. A., Geider R. J. Temperature and algal growth. New Phytologist, 1988, vol. 110, no. 4, pp. 441–461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x

StatSoft : [site]. Moscow, 2025. URL: https://statsoftai.ru/ [accessed: 25.01.2025].

Stonik I. V. Long-term variations in species composition of bloom-forming toxic Pseudo-nitzschia diatoms in the north-western Sea of Japan during 1992–2015. Journal of Marine Science and Engineering, 2021, vol. 9, iss. 6, art. no. 568 (13 p.). https://doi.org/10.3390/jmse9060568

Stonik I. V., Orlova T. Y., Chikalovets I. V., Aizdaicher N. A., Aleksanin A. I., Kachur V. A., Morozova T. V. Pseudo-nitzschia species (Bacillariophyceae) and the domoic acid concentration in Pseudo-nitzschia cultures and bivalves from the northwestern Sea of Japan, Russia. Nova Hedwigia, 2019, Bd 108, Heft 1–2, S. 73–93. https://doi.org/10.1127/nova_hedwigia/2018/0502

Stonik I. V., Orlova T. Yu., Begun A. A. Potentially toxic diatoms Pseudo-nitzschia fraudulenta and P. calliantha from Russian waters of East/Japan Sea and Sea of Okhotsk. Ocean Science Journal, 2008, vol. 43, iss. 1, pp. 25–30. https://doi.org/10.1007/BF03022428

Stonik I. V., Orlova T. Yu., Lundholm N. Diversity of Pseudo-nitzschia H. Peragallo from the western North Pacific. Diatom Research, 2011, vol. 26, iss. 1, pp. 121–134. https://doi.org/10.1080/0269249x.2011.573706

Stonik I. V., Zinov A. A. Changes in the composition of bloom-forming toxic Pseudo-nitzschia diatoms in surface waters in Ussuri Bay, northwestern Sea of Japan, during the autumn seasons of 2017–2022. Journal of Marine Science and Engineering, 2023, vol. 11, iss. 5, art. no. 1024 (14 p.). https://doi.org/10.3390/jmse11051024

Thessen A. E., Bowers H. A., Stoecker D. K. Intra- and interspecies differences in growth and toxicity of Pseudo-nitzschia while using different nitrogen sources. Harmful Algae, 2009, vol. 8, iss. 5, pp. 792–810. https://doi.org/10.1016/j.hal.2009.01.003

Zhou C.-Y., Pan C.-G., Peng F.-J., Zhu R.-J., Hu J.-J., Yu K. Simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in various environmental and biota matrices. Marine Pollution Bulletin, 2024, vol. 203, art. no. 116444 (8 p.). https://doi.org/10.1016/j.marpolbul.2024.116444