##plugins.themes.ibsscustom.article.main##

##plugins.themes.ibsscustom.article.details##

Abstract

Molluscs of the genera Biomphalaria and Bulinus, intermediate hosts of human-pathogenic Schistosoma trematodes, were found in 8 freshwater bodies in the western region of Kindia Prefecture of Guinea. While Bulinus snails were free from schistosome infection, Biomphalaria specimens were parasitized, with infection foci revealed in 4 water bodies. Morphological analysis of shells of infected snails confirmed that they belong to the species Biomphalaria pfeifferi. The movement behavior, body shape, internal anatomy, and morphometric characteristics of the cercariae shed from the snails matched those of Schistosoma mansoni. The obtained ITS1 rDNA gene sequences showed 100% identity with homologous loci of S. mansoni parasitizing on humans and rats in Africa and Brazil. In contrast, they differed by 6 nucleotide substitutions from the closest relative, S. rodhaini, and by 2–6 substitutions from S. rodhaini × S. mansoni hybrids. Phylogenetic analysis strongly supported (100% bootstrap) the clustering of the sampled sequences with that of S. mansoni, distinct from those of S. rodhaini and hybrid lineages, confirming species identification. This study reports the first documented evidence of S. mansoni infection in B. pfeifferi and its molecular characterization in the Republic of Guinea. Infected snails (n = 32) were significantly larger on average than uninfected ones (n = 1,110) in samples where trematodes were found. Analysis of environmental factors revealed no effect of pH, dissolved oxygen, or water temperature within their observed ranges during the study period (October and November) on occurrence of B. pfeifferi and prevalence of infection with S. mansoni. Notably, B. pfeifferi exhibited tolerance to slightly hypoxic conditions, likely explaining their persistence in excrement-contaminated waters and facilitating schistosome larvae transmission. The presence of schistosomes was associated with specific biocenosis features, including slack or slow-flowing water and abundant submerged vegetation. All infected water bodies were located within urban areas. Obtained data are significant for developing schistosomiasis control strategies in the region.

Authors

E. Dmitrieva

leading researcher, PhD

https://orcid.org/0000-0001-6300-2458

https://elibrary.ru/author_items.asp?id=742556

S. Diakité

researcher, PhD

https://orcid.org/0009-0009-0284-7495

P. Koïvogui

researcher, head of the ethics department

V. Pronkina

researcher

https://orcid.org/0000-0001-9159-565X

https://elibrary.ru/author_items.asp?id=771443

V. Uppe

junior researcher

https://orcid.org/0000-0002-8235-355X

https://elibrary.ru/author_items.asp?id=1254969

L. Konate

researcher, head of the plankton laboratory, PhD

M. Sow

researcher, head of the department of ichthyology, parasitology, and aquaculture, PhD

A. Balde

researcher, PhD

https://orcid.org/0009-0003-1231-5608

M. Camara

researcher

D. Polevoy

laboratory research assistant

R. Machkevsky

laboratory research assistant

E. Vodiasova

senior researcher, PhD

https://orcid.org/0000-0003-3886-2880

https://elibrary.ru/author_items.asp?id=936312

I. Keita

deputy general director, PhD

https://orcid.org/0009-0001-2560-9117

A. Diallo

general director, D. Sc.

https://orcid.org/0009-0003-4129-050X

References

Атаев Г. Л., Баженова Д. Р., Токмакова А. С. Размножение материнских спороцист Schistosoma mansoni // Паразитология. 2016. Т. 50, № 2. С. 114–120. [Ataev G. L., Bazhenova D. R., Tokmakova A. S. Reproduction of Schistosoma mansoni mother sporocyst. Parazitologiya, 2016, vol. 50, no. 2, pp. 114–120. (in Russ.)]. https://elibrary.ru/vrnyhr

Быховская-Павловская И. Е. Паразиты рыб. Руководство по изучению / АН СССР, Зоологический институт. Ленинград : Наука, Ленингр. отд-ние, 1985. 121 с. [Bykhovskaya-Pavlovskaya I. E. Parazity ryb. Rukovodstvo po izucheniyu / AN SSSR, Zoologicheskii institut. Leningrad : Nauka, Leningr. otd-nie, 1985, 121 p. (in Russ.)]. https://doi.org/10.21072/bykhovskaya-pavlovskaya-1985

Скрябин К. И. Трематоды животных и человека. Основы трематодологии. Т. 5 / АН СССР, Гельминтологическая лаборатория. Москва : Изд-во АН СССР, 1951. 624 с. [Skryabin K. I. Trematody zhivotnykh i cheloveka. Osnovy trematodologii. Vol. 5 / AN SSSR, Gel’mintologicheskaya laboratoriya. Moscow : Izd-vo AN SSSR, 1951, 624 p. (in Russ.)]

Alzaylaee H., Collins R. A., Shechonge A., Ngatunga B. P., Morgan E. R., Genner M. J. Environmental DNA-based xenomonitoring for determining Schistosoma presence in tropical freshwaters. Parasites & Vectors, 2020, vol. 13, art. no. 63 (11 p.). https://doi.org/10.1186/s13071-020-3941-6

Andrus P. S., Stothard J. R., Wade C. M. Seasonal patterns of Schistosoma mansoni infection within Biomphalaria snails at the Ugandan shorelines of Lake Albert and Lake Victoria. PLoS Neglected Tropical Diseases, 2023, vol. 17, iss. 8, art. no. e0011506 (18 p.). https://doi.org/10.1371/journal.pntd.0011506

Aslan I. H., Pourtois J. D., Chamberlin A. J., Mitchell K. R., Mari L., Lwiza K. M., Wood C. L., Mordecai E. A., Yu A., Tuan R., Palasio R. G. S., Monteiro A. M. V., Kirk D., Athni T. S., Sokolow S. H., N’Goran E. K., Diakite N. R., Ouattara M., Gatto M., Casagrandi R., Little D. C., Ozretich R. W., Norman R., Allan F., Brierley A. S., Liu P., Pereira T. A., de Leo G. A. Re-assessing thermal response of schistosomiasis transmission risk: Evidence for a higher thermal optimum than previously predicted. PLoS Neglected Tropical Diseases, 2024, vol. 18, iss. 6, art. no. e0011836 (23 p.). https://doi.org/10.1371/journal.pntd.0011836

Aula O. P., McManus D. P., Jones M. K., Gordon C. A. Schistosomiasis with a focus on Africa. Tropical Medicine and Infectious Disease, 2021, vol. 6, iss. 3, art. no. 109 (40 p.). https://doi.org/10.3390/tropicalmed6030109

Bakhoum S., Ba C. T., Haggerty C. J. E., Jouanard N., Riveau G., Rohr J. R. Risk of human exposure to the intestinal schistosome, Schistosoma mansoni, across seasons along the Senegal River. Journal of Gastroenterology & Hepatology Research, 2021, vol. 6, iss. 2, art. no. 038 (9 p.). https://doi.org/10.24966/ghr-2566/100038

Bakhoum S., Ndione R. A., Haggerty C. J. E., Wolfe C., Sow S., Ba C. T., Riveau G., Rohr J. R. Influence des paramètres physico-chimiques sur la répartition spatiale des mollusques hôtes intermédiaires des schistosomes humains dans le delta du fleuve Sénégal. Médecine et Santé Tropicales, 2019, vol. 29, no. 1, pp. 61–67.

Bowles J., McManus D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology, 1993, vol. 57, iss. 2, pp. 231–239. https://doi.org/10.1016/0166-6851(93)90199-8

Brown D. S. Freshwater Snails of Africa and Their Medical Importance. 2nd edition. London : Taylor & Francis, 2005, 642 p.

De Elías-Escribano A., Artigas P., Salas-Coronas J., Luzon-Garcia M. P., Reguera-Gomez M., Cabeza-Barrera M. I., Vázquez-Villegas J., Boissier J., Mas-Coma S., Bargues M. D. Schistosoma mansoni × S. haematobium hybrids frequently infecting sub-Saharan migrants in southeastern Europe: Egg DNA genotyping assessed by RD-PCR, sequencing and cloning. PLoS Neglected Tropical Diseases, 2025, vol. 19, iss. 3, art. no. e0012942 (27 p.). https://doi.org/10.1371/journal.pntd.0012942

Dorsey C. H., Cousin C. E., Lewis F. A., Stirewalt M. A. Ultrastructure of the Schistosoma mansoni cercaria. Micron, 2002, vol. 33, iss. 3, pp. 279–323. https://doi.org/10.1016/s0968-4328(01)00019-1

Faust E. C. Notes on South African cercariae. The Journal of Parasitology, 1919, vol. 5, no. 4, pp. 164–175. https://doi.org/10.2307/3271082

Fripp P. J. On the morphology of Schistosoma rodhaini (Trematoda, Digenea, Schistosomatidae). Journal of Zoology, 1967, vol. 151, iss. 4, pp. 433–452. https://doi.org/10.1111/j.1469-7998.1967.tb02124.x

Gabrielli A. F., Garba Djirmay A. Schistosomiasis in Europe. Current Tropical Medicine Reports, 2023, vol. 10, iss. 3, pp. 79–87. https://doi.org/10.1007/s40475-023-00286-9

Gandasegui J., Fernández-Soto P., Hernández-Goenaga J., López-Abán J., Vicente B., Muro A. Biompha-LAMP: A new rapid loop-mediated isothermal amplification assay for detecting Schistosoma mansoni in Biomphalaria glabrata snail host. PLoS Neglected Tropical Diseases, 2016, vol. 10, iss. 12, art. no. e0005225 (14 p.). https://doi.org/10.1371/journal.pntd.0005225

Guilavogui T., Verdun S., Koïvogui A., Viscogliosi E., Certad G. Prevalence of intestinal parasitosis in Guinea: Systematic review of the literature and meta-analysis. Pathogens, 2023, vol. 12, iss. 2, art. no. 336 (30 p.). https://doi.org/10.3390/pathogens12020336

Haggerty C. J. E., Bakhoum S., Civitello D. J., de Leo G. A., Jouanard N., Ndione R. A., Remais J. V., Riveau G., Senghor S., Sokolow S. H., Sow S., Wolfe C., Wood C. L., Jones I., Chamberlin A. J., Rohr J. R. Aquatic macrophytes and macroinvertebrate predators affect densities of snail hosts and local production of schistosome cercariae that cause human schistosomiasis. PLoS Neglected Tropical Diseases, 2020, vol. 14, iss. 7, art. no. e0008417 (25 p.). https://doi.org/10.1371/journal.pntd.0008417

Hailegebriel T., Nibret E., Munshea A. Distribution and seasonal abundance of Biomphalaria snails and their infection status with Schistosoma mansoni in and around Lake Tana, northwest Ethiopia. Scientific Reports, 2022, vol. 12, art. no. 17055 (12 p.). https://doi.org/10.1038/s41598-022-21306-0

Hailegebriel T., Nibret E., Munshea A. Prevalence of Schistosoma mansoni and S. haematobium in snail intermediate hosts in Africa: A systematic review and meta-analysis. Journal of Tropical Medicine, 2020, vol. 2020, art. no. 8850840 (18 p.). https://doi.org/10.1155/2020/8850840

Hodges M., Koroma M. M., Baldé M. S., Turay H., Fofanah I., Divall M. J., Winkler M. S., Zhang Y. Current status of schistosomiasis and soil-transmitted helminthiasis in Beyla and Macenta Prefectures, Forest Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, vol. 105, iss. 11, pp. 672–674. https://doi.org/10.1016/j.trstmh.2011.07.008

Hoover C. M., Rumschlag S. L., Strgar L., Arakala A., Gambhir M., de Leo G. A., Sokolow S. H., Rohr J. R., Remais J. V. Effects of agrochemical pollution on schistosomiasis transmission: A systematic review and modelling analysis. The Lancet Planetary Health, 2020, vol. 4, iss. 7, pp. e280–e291.

Kane R. A., Southgate V. R., Rollinson D., Littlewood D. T. J., Lockyer A. E., Pagès J. R., Tchuem Tchuenté L.-A., Jourdane J. A phylogeny based on three mitochondrial genes supports the division of Schistosoma intercalatum into two separate species. Parasitology, 2003, vol. 127, pt 2, pp. 131–137. https://doi.org/10.1017/s0031182003003421

Magero V. O., Kisara S., Suleman M. A., Wade C. M. Distribution of the schistosome intermediate snail host Biomphalaria pfeifferi in East Africa’s river systems and the prevalence of Schistosoma mansoni infection. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2025, vol. 119, iss. 3, pp. 253–265. https://doi.org/10.1093/trstmh/trae115

Mandahl-Barth G. Intermediate hosts of Schistosoma. African Biomphalaria and Bulinus: I. Bulletin of the World Health Organization, 1957, vol. 16, no. 6, pp. 1103–1163.

Meuleman E. A., Holzmann P. J., Peet R. C. The development of daughter sporocysts inside the mother sporocyst of Schistosoma mansoni with special reference to the ultrastructure of the body wall. Zeitschrift für Parasitenkunde, 1980, vol. 61, iss. 3, pp. 201–212. https://doi.org/10.1007/bf00925512

McCreesh N., Booth M. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: An agent-based modelling study. PLoS One, 2014, vol. 9, iss. 7, art. no. e101462 (7 p.). https://doi.org/10.1371/journal.pone.0101462

Morgan J. A. T., DeJong R. J., Lwambo N. J. S., Mungai B. N., Mkoji G. M., Loker E. S. First report of a natural hybrid between Schistosoma mansoni and S. rodhaini. Journal of Parasitology, 2003, vol. 89, iss. 2, pp. 416–418. https://doi.org/10.1645/0022-3395(2003)089[0416:froanh]2.0.CO;2

Nucleotide database. In: National Library of Medicine. National Center for Biotechnology Information : official site. 2024. URL: https://www.ncbi.nlm.nih.gov/nucleotide/ [accessed: 27.11.2024].

Onasanya A., Bengtson M., Oladepo O., Van Engelen J., Diehl J. C. Rethinking the top-down approach to schistosomiasis control and elimination in sub-Saharan Africa. Frontiers in Public Health, 2021, vol. 9, art. no. 622809 (6 p.). https://doi.org/10.3389/fpubh.2021.622809

Pflüger W. Experimental epidemiology of schistosomiasis. Zeitschrift für Parasitenkunde, 1980, vol. 63, iss. 2, pp. 159–169. https://doi.org/10.1007/bf00927532

Rossi R. J. Mathematical Statistics: An Introduction to Likelihood Based Inference. New York : John Wiley & Sons, 2018, 448 p.

Salari P., Fürst T., Knopp S., Utzinger J., Tediosi F. Cost of interventions to control schistosomiasis: A systematic review of the literature. PLoS Neglected Tropical Diseases, 2020, vol. 14, iss. 3, art. no. e0008098 (23 p.). https://doi.org/10.1371/journal.pntd.0008098

Savassi B. A. E. S., Mouahid G., Lasica C., Mahaman S.-D. K., Garcia A., Courtin D., Allienne J.-F., Ibikounlé M., Moné H. Cattle as natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 × Schistosoma bovis Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. Parasitology Research, 2020, vol. 119, iss. 7, pp. 2189–2205. https://doi.org/10.1007/s00436-020-06709-0

Sato M. O., Rafalimanantsoa A., Ramarokoto C., Rahetilahy A. M., Ravoniarimbinina P., Kawai S., Minamoto T., Sato M., Kirinoki M., Rasolofo V., De Calan M., Chigusa Y. Usefulness of environmental DNA for detecting Schistosoma mansoni occurrence sites in Madagascar. International Journal of Infectious Diseases, 2018, vol. 76, pp. 130–136. https://doi.org/10.1016/j.ijid.2018.08.018

Sokouri E. A., Ahouty Ahouty B., N’Djetchi M., Abé I. A., Yao B. G. F. D., Konan T. K., MacLeod A., Noyes H., Nyangiri O., Enock Matovu E., Koffi M. Impact of environmental factors on Biomphalaria pfeifferi vector capacity leading to human infection by Schistosoma mansoni in two regions of western Côte d’Ivoire. Parasites & Vectors, 2024, vol. 17, art. no. 179 (12 p.). https://doi.org/10.1186/s13071-024-06163-2

Spaan J. M., Pennance T., Laidemitt M. R., Sims N., Roth J., Lam Y., Rawago F., Ogara G., Loker E. S., Odiere M. R., Steinauer M. L. Multi-strain compatibility polymorphism between a parasite and its snail host, a neglected vector of schistosomiasis in Africa. Current Research in Parasitology & Vector-Borne Diseases, 2023, vol. 3, art. no. 100120 (10 p.). https://doi.org/10.1016/j.crpvbd.2023.100120

Steinauer M. L., Hanelt B., Mwangi I. N., Maina G. M., Agola L. E., Kinuthia J. M., Mutuku M. W., Mungai B. N., Wilson W. D., Mkoji G. M., Loker E. S. Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Molecular Ecology, 2008, vol. 17, iss. 23, pp. 5062–5074. https://doi.org/10.1111/j.1365-294x.2008.03957.x

Stirewalt M. A. Schistosoma mansoni: Cercaria to schistosomule. In: Advances in Parasitology / B. Dawes (Ed.). London ; New York : Academic Press, 1974, vol. 12, pp. 115–182. https://doi.org/10.1016/S0065-308X(08)60388-7

Sturrock R. F. The development of irrigation and its influence on the transmission of bilharziasis in Tanganyika. Bulletin of the World Health Organization, 1965, vol. 32, no. 2, pp. 225–236.

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 2021, vol. 38, iss. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Webster B. L., Southgate V. R., Littlewood D. T. J. A revision of the interrelationships of Schistosoma including the recently described Schistosoma guineensis. International Journal for Parasitology, 2006, vol. 36, iss. 8, pp. 947–955. https://doi.org/10.1016/j.ijpara.2006.03.005

Webster B. L., Diaw O. T., Seye M. M., Webster J. P., Rollinson D. Introgressive hybridization of Schistosoma haematobium group species in Senegal: Species barrier break down between ruminant and human schistosomes. PLoS Neglected Tropical Diseases, 2013, vol. 7, iss. 4, art. no. e2110 (9 p.). https://doi.org/10.1371/journal.pntd.0002110

Woolhouse M. E. On the interpretation of age-prevalence curves for schistosome infections of host snails. Parasitology, 1989, vol. 99, pt 1, pp. 47–56. https://doi.org/10.1017/s0031182000061011

Funding

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в форме субсидии в соответствии с п. 4 ст. 78.1 Бюджетного кодекса Российской Федерации (соглашение № 075-15-2024-655) на выполнение проекта № 13.2251.21.0260 «Выявление природных очагов заражения моллюсков видами рода Schistosoma на территории Гвинейской Республики и разработка методов ПЦР-диагностики видов шистосом в моллюсках и экспресс-тестирования воды (эДНК) на наличие личинок этих паразитов в природных водоёмах».