##plugins.themes.ibsscustom.article.main##

Kukla S. P., Slobodskova V. V., Chelomin V. P. Genotoxic impact of titanium dioxide nanoparticles on mollusk Mytilus trossulus (Gould, 1850) in marine environment. Marine Biological Journal, 2018, vol. 3, no. 4, pp. 43-50. https://doi.org/10.21072/mbj.2018.03.4.05

##plugins.themes.ibsscustom.article.details##

Abstract

An increase in the input of titanium dioxide nanoparticles (NP TiO2) into the marine environment can cause unpredictable consequences and create a potential danger to organisms of different trophic levels. Impact of NP TiO2 on the bivalve Mytilus trossulus (Gould, 1850) was studied using the DNA comet method, and the levels of DNA damage were assessed. Shown that 10-day exposure to NP TiO2 at concentrations of 200 and 1000 μg·l-1 leads to destructive changes in the DNA of the gills and of the digestive gland of the mollusks. Difference between DNA damage in two examined tissues was noted. Furthermore, the elevation of titanium content and malondialdehyde content in digestive gland of mollusks was noted.

Authors

S. P. Kukla

https://orcid.org/0000-0002-2572-115X

https://elibrary.ru/author_items.asp?id=980805

V. V. Slobodskova

https://orcid.org/0000-0001-9562-7719

https://elibrary.ru/author_items.asp?id=178308

V. P. Chelomin

https://orcid.org/0000-0002-1840-3057

https://elibrary.ru/author_items.asp?id=63428

References

Слободскова В. В., Кукла С. П., Челомин В. П. Анализ качества морской среды на основе определения генотоксичности ДНК клеток жабр приморского гребешка Mizuhopecten yessoensis (Jay, 1856) // Биология моря. 2015. Т. 41, № 6. С. 457–460. [Slobodskova V. V., Kukla S. P., Chelomin V. P. An analysis of the quality of the marine environment based on determination of the genotoxicity of DNA in the gill cells of the Yesso Scallop, Mizuhopecten yessoensis (Jay, 1856). Biologiya morya, 2015, vol. 41, no. 6, pp. 457–460. (in Russ.)].

Харламов А. И., Кириллова Н. В., Скрипниченко А. В., Губарени Н. И., Фоменко В. В. Нанохимические особенности наноструктур, нанофаз и наночастиц // Доповіді Національної академії наук України. 2010. № 4. С. 157–163. [Kharlamov A. I., Kirillova N. V., Skripnichenko A. V., Gubareni N. I., Fomenko V. V. Nanokhimicheskie osobennosti nanostruktur, nanofaz i nanochastits. Dopovidi Natsionalnoi akademii nauk Ukrainy, 2010, no. 4, pp. 157–163. (in Russ.)].

Ali D., Ali H., Alarifi S., Kumar S., Serajuddin M., Mashih A. P., Ahmed M., Khan M., Adil S. F., Shaik M. R., Ansari A. A. Impairment of DNA in a freshwater gastropod (Lymnea luteola L.) after exposure to titanium dioxide nanoparticles. Archives of Environmental Contamination and Toxicology, 2015, vol. 68, iss. 3, pp. 543–552. https://doi.org/10.1007/s00244-015-0132-0.

Buege J. A., Aust S. D. Microsomal lipid peroxidation. Methods in Enzymology, 1978, vol. 52, pp. 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6.

Canesi L., Ciacci C., Fabbri R., Marcomini A., Pojana G., Gallo G. Bivalve mollusks as a unique target group for nanoparticle toxicity. Marine Environmental Research, 2012, vol. 76, pp. 16–21. https://doi.org/10.1016/j.marenvres.2011.06.005.

Canesi L., Frenzilli G., Balbi T., Bernareschi M., Ciacci C., Corsolini S., Torre C. D., Rabbri R., Faleri C., Focardi S., Guidi P., Kocan A., Marcomini A., Mariotti M., Nigro M., Pozo-Gallardo K., Rocco L., Scarcelli V., Smerilli A., Corsi L. Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology, 2014, vol. 153, pp. 53–65. https://doi.org/10.1016/j.aquatox.2013.11.002.

Chen Z., Wang Y., Ba T., Li Y., Pu J., Chen T., Song Y., Gu Y., Qian Q., Yang J., Jia G. Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicology Letters, 2014, vol. 226, iss. 3, pp. 314–319. https://doi.org/10.1016/j.toxlet.2014.02.020.

Chelomin V. P., Slobodskova V. V., Zakhartsev M., Kukla S. Genotoxic potential of copper oxide nanoparticles in the bivalve mollusk Mytilus trossulus. Journal of Ocean University of China, 2017, vol. 16, iss. 2, pp. 339–345. https://doi.org/10.1007/s11802-017-3133-y.

Donaldson K., Poland K. A., Schins L. P. F. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology, 2010, vol. 4, iss. 4, pp. 414–420. https://doi.org/10.3109/17435390.2010.482751.

Fang Q., Shi X., Zhang L., Wang Q., Wang X., Guo Y., Zhou B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. Journal of Hazardous Materials, 2015, vol. 283, pp. 897–904. https://doi.org/10.1016/j.jhazmat.2014.10.039.

Galloway T., Lewis C., Dolciotti I., Johnston B. D., Moger J., Regoli F. Sublethal toxicity of nanotitanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environmental Pollution, 2010, vol. 158, pp. 1748–1755. https://doi.org/10.1016/j.envpol.2009.11.013.

Girardello F., Custódio Leite C., Vianna Villela I., da Silva Machado M., Luiz Mendes Juchem A., Roesch-Ely M., Neves Fernandes A., Salvador M., Pêgas Henriques A. J. Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei. Aquatic Toxicology, 2016, vol. 170, pp. 223–228. https://doi.org/10.1016/j.aquatox.2015.11.030.

Gomes T., Araujo O., Pereira R., Almeida A. C., Cravo A., Bebianno M. J. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine Environmental Research, 2013, vol. 84, pp. 51–59. https://doi.org/10.1016/j.marenvres.2012.11.009.

Gottschalk F., Sun T. Y., Nowack B. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 2013, vol. 181, pp. 287–300. https://doi.org/10.1016/j.envpol.2013.06.003.

Jugan M. L., Barillet S., Simon-Deckers A., Herlin-Boime N., Sauvaigo S., Douki T., Carriere M. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology, 2012, vol. 6, iss. 5, pp. 501–513. https://doi.org/10.3109/17435390.2011.587903.

Kaegi R., Ulrich A., Sinnet B., Vonbank R., Wichser A., Zuleeg S., Simmler H., Brunner S., Vonmont H., Burkhardt M., Boller M. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 2008, vol. 156, iss. 2, pp. 233–239. https://doi.org/10.1016/j.envpol.2008.08.004.

Keller A. A., Wang H., Zhou D., Lenihan H. S., Cherr G., Cardinale D. J., Miller R., Ji Z. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology, 2010, vol. 44, iss. 6, pp. 1962–1967. https://doi.org/10.1021/es902987d.

Kiser M. A., Westerhoff P., Benn T., Wang Y., Perez-Rivera J., Hrisovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environmental Science & Technology, 2009, vol. 43, iss. 17, pp. 6757–6763. https://doi.org/10.1021/es901102n.

Magdolenova Z., Collins A., Kumar A., Dhawan A., Stone V., Dusinka M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 2014, vol. 8, iss. 3, pp. 233–278. https://doi.org/10.3109/17435390.2013.773464.

Mahaye N., Thwala M., Cowan D. A., Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutation Research / Reviews in Mutation Research, 2017, vol. 773, pp. 134–160. https://doi.org/10.1016/j.mrrev.2017.05.004.

Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, vol. 2013, article ID 942916 (15 p.). https://dx.doi.org/10.1155/2013/942916.

Matranga V., Corsi I. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Marine Environmental Research, 2012, vol. 76, pp. 32–40. https://doi.org/10.1016/j.marenvres.2012.01.006.

Moore M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 2006, vol. 32, iss. 8, pp. 967–976. https://doi.org/10.1016/j.envint.2006.06.014.

Morelli E., Gabellieri E., Bonomini A., Tognotti D., Grassi G., Corsi I. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 2018, vol. 148, pp. 184–193. https://doi.org/10.1016/j.ecoenv.2017.10.024.

Mueller N., Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 2008, vol. 42, iss. 12, pp. 4447–4453. https://doi.org/10.1021/es7029637.

Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 2005, vol. 113, iss. 7, pp. 823–839. https://doi.org/10.1289/ehp.7339.

Piccinno F., Gottschalk F., Seeger S., Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticles Research, 2012, vol. 14, arti. ID 1109 (11 p.). https://doi.org/10.1007/s11051-012-1109-9.

Rim K. T., Song S. W., Kim H. Y. Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: A literature review. Safety and Health at Work, 2013, vol. 4, iss. 4, pp. 177–186. https://doi.org/10.1016/j.shaw.2013.07.006.

Rocco L., Santonastaso M., Mottola F., Castagliola D., Suero T., Pacifico S., Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicology and Environmental Safety, 2015, vol. 113, pp. 223–230. https://doi.org/10.1016/j.ecoenv.2014.12.012.

Robichaud C. O., Uyar A. E., Darbym R., Zucker L. G., Wiesner M. R. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science & Technology, 2009, vol. 43, iss. 12, pp. 4227–4233. https://doi.org/10.1021/es8032549.

Singh N., Manshian B., Jenkins G. J. S., Griffiths S. M., Williams P. M., Maffeis T. G. G., Wright C. J., Doak S. H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, vol. 30, iss. 23–24, pp. 3891–3914. https://doi.org/10.1016/j.biomaterials.2009.04.009.

Sun T. Y., Bornhöft N. A., Hungerbühler K., Nowack B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environmental Science & Technology, 2016, vol. 50, iss. 9, pp. 4701−4711. https://doi.org/10.1021/acs.est.5b05828.

Suh W. H., Suslick K. S., Stucky Y. D., Suh Y.-H. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, vol. 87, iss. 3, pp. 133–170. https://doi.org/10.1016/j.pneurobio.2008.09.009.

Tian S., Zhang Y., Song C., Zhu X., Xing B. Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata). Environmental Pollution, 2014, vol. 192, pp. 59–64. https://doi.org/10.1016/j.envpol.2014.05.010.

Torres-Duarte C., Ramos-Torres K. M., Rahimoff R., Cherr G. N. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake. Aquatic Toxicology, 2017, vol. 189, pp. 134–141. https://doi.org/10.1016/j.aquatox.2017.05.008.

Vignardia C. P., Hasue F. M., Sartório P. V., Cardoso C. M., Machado A. S. D., Passos M. J. A. C. R., Santos T. C. A., Nucci J. M., Hewerd T. L. R., Watanabe L., Gomes V., Phan N. V. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquatic Toxicology, 2015, vol. 158, pp. 218–229. https://doi.org/10.1016/j.aquatox.2014.11.008.

Ward J. E., Kach D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research, 2009, vol. 68, iss. 3, pp. 137–142. https://doi.org/10.1016/j.marenvres.2009.05.002.

Statistics

Downloads

Download data is not yet available.