Spatial and temporal dynamics of the phytoplankton biomass in the surface layer of the Black Sea
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
The spatial and temporal variability of phytoplankton biomass in the surface layer of the Black Sea during an 18-year period is analyzed, and the effect of the main currents in the sea on the spatial and temporal dynamics of phototrophic phytoplankton biomass is assessed. Regular long-term chlorophyll concentration data were used, obtained from satellite observations with SeaWiFS and MODIS-Aqua/Terra instruments in the Black Sea for 1998–2015. The role of macro- and microcirculations in the spatial and temporal variability of phytoplankton biomass is estimated. A gain in wind activity and a drop in water temperature from October to March, which lead to an increase in the depth of the mixed upper layer and the intensity of the main synoptic circulations, become a significant factor promoting winter–spring phytoplankton bloom. As revealed, a decrease in the mean water temperature in the cold season to +7…+8 °C, lasting for more than six weeks in the deepwater zone, leads to the intensive biomass development in spring. It was established that the mean phytoplankton biomass for 18 years in the western and eastern cyclonic cycles is (38.0 ± 17.8) and (37.7 ± 16.8) mg C·m−3, respectively, and in the Batumi anticyclone, (38.2 ± 18.0) mg C·m−3. As a rule, the Rim Current carries phytoplankton formed at the shelf zone along the coastline and almost does not mix with deep waters. In the cyclonic cycles, winter–spring phytoplankton bloom is observed on average for six weeks. Intensive bloom in the area of the flow of northwestern rivers, recorded in May–June, extends to the Bosporus, while in the cold season, it can penetrate into the deep-sea area in the form of micro-eddies. In winter and spring, the Sevastopol anticyclonic eddy stood out as a separate zone in terms of biomass development. The role of anthropogenic load is most significant in the coastal zone. However, the effect of coastal waters on the deep-sea area is possible in late autumn and winter.
Authors
References
Арашкевич Е. Г., Луппова Н. Е., Никишина А. Б., Паутова Л. А., Часовников В. К., Дриц А. В., Подымов О. И., Романова Н. Д., Станичная Р. Р., Зацепин А. Г., Куклев С. Б., Флинт М. В. Судовой экологический мониторинг в шельфовой зоне Чёрного моря: оценка современного состояния пелагической экосистемы // Океанология. 2015. Т. 55, № 6. С. 964–970. [Arashkevich E. G., Louppova N. E., Nikishina A. B., Pautova L. A., Chasovnikov V. K., Drits A. V., Podymov O. I., Romanova N. D., Stanichnaya R. R., Zatsepin A. G., Kuklev S. B., Flint M. V. Marine environmental monitoring in the shelf zone of the Black Sea: Assessment of the current state of the pelagic ecosystem. Okeanologiya, 2015, vol. 55, no. 6, pp. 964–970. (in Russ.)]. https://doi.org/10.7868/S0030157415060015
Белокопытов В. Н. Термохалинная и гидролого-акустическая структура вод Чёрного моря : автореф. дис. … канд. геогр. наук : 11.00.08 / МГИ НАН Украины. Севастополь, 2004. 24 с. [Belokopytov V. N. Termokhalinnaya i gidrologo-akusticheskaya struktura vod Chernogo morya : avtoref. dis. … kand. geogr. nauk : 11.00.08 / MGI NAN Ukrainy. Sevastopol, 2004, 24 p. (in Russ.)]
Берсенева Г. П., Чурилова Т. Я., Георгиева Л. В. Сезонная изменчивость хлорофилла и биомассы фитопланктона в западной части Чёрного моря // Океанология. 2004. Т. 44, № 3. С. 389–398. [Berseneva G. P., Churilova T. Ya., Georgieva L. V. Seasonal variability of the chlorophyll and phytoplankton biomass in the western part of the Black Sea. Okeanologiya, 2004, vol. 44, no. 3, pp. 389–398. (in Russ.)]
Иванов В. А., Белокопытов В. Н. Океанография Чёрного моря. Севастополь : ЭКОСИ-Гидрофизика, 2011. 212 с. [Ivanov V. A., Belokopytov V. N. Oceanography of the Black Sea. Sevastopol : EKOSI-Gidrofizika, 2011, 212 p. (in Russ.)]
Кривенко О. В., Пархоменко А. В. Восходящий и регенерационный потоки неорганических соединений азота и фосфора в глубоководной области Чёрного моря // Журнал общей биологии. 2014. Т. 75, № 5. С. 394–408. [Krivenko O. V., Parkhomenko A. V. Upward and regeneration fluxes of inorganic nitrogen and phosphorus of the deep-water areas of the Black Sea. Zhurnal obshchei biologii, 2014, vol. 75, no. 5, pp. 394–408. (in Russ.)]
Микаэлян А. С. Временная динамика фитопланктона глубоководного бассейна Чёрного моря : дис. … докт. биол. наук : 03.02.10. Москва, 2018. 266 с. [Mikaelyan A. S. Vremennaya dinamika fitoplanktona glubokovodnogo basseina Chernogo morya. [dissertation]. Moscow, 2018, 266 p. (in Russ.)]
Суслин В. В., Чурилова Т. Я., Ли М. Е., Мончева С., Финенко З. З. Концентрация хлорофилла a в Чёрном море: сравнение спутниковых алгоритмов // Фундаментальная и прикладная гидрофизика. 2018. Т. 11, № 3. С. 64–72. [Suslin V. V., Churilova T. Ya., Lee M., Moncheva S., Finenko Z. Z. Comparison of the Black Sea chlorophyll a algorithms for SeaWiFS and MODIS instruments. Fundamental’naya i prikladnaya gidrofizika, 2018, vol. 11, no. 3, pp. 64–72. (in Russ.)]. https://doi.org/10.7868/S2073667318030085
Финенко З. З., Ковалёва И. В., Суслин В. В. Новый подход к оценке биомассы фитопланктона и её вариабельности в поверхностном слое Чёрного моря по спутниковым данным // Успехи современной биологии. 2018. Т. 138, № 3. С. 294–307. [Finenko Z. Z., Kovalyova I. V., Suslin V. V. A new approach to estimate phytoplankton biomass and its variability in the Black Sea surface water layer based on satellite data. Uspekhi sovremennoi biologii, 2018, vol. 138, no. 3, pp. 294–307. (in Russ.)]. https://doi.org/10.7868/S0042132418030079
Финенко З. З., Мансурова И. М., Суслин В. В. Динамика концентрации хлорофилла a в Чёрном море по спутниковым измерениям // Морской биологический журнал. 2019. Т. 4, № 2. С. 87–95. [Finenko Z. Z., Mansurova I. M., Suslin V. V. Dynamics of chlorophyll a concentration in the Black Sea on satellite data. Morskoj biologicheskij zhurnal, 2019, vol. 4, no. 2, pp. 87–95. (in Russ.)]. https://doi.org/10.21072/mbj.2019.04.2.09
Dorofeev V. L., Sukhikh L. I. Study of long-term variability of Black Sea dynamics on the basis of circulation model assimilation of remote measurements. Izvestiya. Atmospheric and Oceanic Physics, 2017, vol. 53, no. 2, pp. 224–232. https://doi.org/10.1134/S0001433817020025
Eppley R. W., Harrison W. G., Chisholm S. W., Stewart E. Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. Journal of Marine Research, 1977, vol. 35, pp. 671–696.
Finenko Z. Z., Hoepffner N., Williams R., Piontkovski S. A. Phytoplankton carbon to chlorophyll a ratio: Response to light, temperature and nutrient limitation. Morskoj ekologicheskij zhurnal, 2003, vol. 2, no. 2, pp. 40–64. https://repository.marine-research.ru/handle/299011/707
Geider R. J. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytologist, 1987, vol. 106, iss. 1, pp. 1–34. https://doi.org/10.1111/j.1469-8137.1987.tb04788.x
Korotaev G., Oguz T., Riser S. Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, vol. 53, iss. 17–19, pp. 1901–1910. https://doi.org/10.1016/j.dsr2.2006.04.017
Kubryakov A. A., Zatsepin A. G., Stanichny S. V. Anomalous summer–autumn phytoplankton bloom in 2015 in the Black Sea caused by several strong wind events. Journal of Marine Systems, 2019, vol. 194, pp. 11–24. https://doi.org/10.1016/j.jmarsys.2019.02.004
Menden-Deuer S., Lessard E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 2000, vol. 45, iss. 3, pp. 569–579. https://doi.org/10.4319/lo.2000.45.3.0569
Mikaelyan A. S., Pautova L. A., Chasovnikov V. K., Mosharov S. A., Silkin V. A. Alternation of diatoms and coccolithophores in the north-eastern Black Sea: A response to nutrient changes. Hydrobiologia, 2015, vol. 755, iss. 1, pp. 89–105. https://doi.org/10.1007/s10750-015-2219-z
Suslin V., Churilova T. A regional algorithm for separating light absorption by chlorophyll-a and coloured detrital matter in the Black Sea, using 480–560 nm bands from ocean colour scanners. International Journal of Remote Sensing, 2016, vol. 37, no. 18, pp. 4380–4400. https://doi.org/10.1080/01431161.2016.1211350
Suslin V. V., Slabakova V. K., Churilova T. Ya. Diffuse attenuation coefficient for downwelling irradiance at 490 nm and its spectral characteristics in the Black Sea upper layer: Modeling, in situ measurements and ocean color data. Proceedings of SPIE : 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 2017, vol. 10466, art. no. 104663H (13 p.). https://doi.org/10.1117/12.2287367