Assessment of carbon stock in the Zostera marina Linnaeus, 1753 ecosystem on sandy sediments of the Srednyaya Bight (Peter the Great Bay, the Sea of Japan) based on field observations
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
Coastal seagrass ecosystems, particularly Zostera marina Linnaeus, 1753 ones, are capable of accumulating organic carbon by fixing carbon dioxide via photosynthesis. Seagrass biomass is considered as a short-term carbon storage, and underlying bottom sediments, as a long-term one. The research on organic matter accumulation by seagrass ecosystems is mostly carried out in areas with stable sedimentation. For such ecosystems, the importance of seagrass areas within the concept of blue carbon was shown. However, for the seas of temperate latitudes, coastal waters with unstable sedimentation and prevalence of sandy sediments are common, and the scale of carbon storage in seagrass ecosystems is not obvious. In this work, biomass and carbon stock in Z. marina leaves and roots, as well as Corg concentration and carbon stock in the upper layers of bottom sediments (0.25 m and 1 m thick), were determined for typical habitats in the semi-open Srednyaya Bight (Peter the Great Bay, the Sea of Japan), where sandy sediments prevail. Z. marina roots were characterized by 3–20 times lower biomass than its leaves. This difference increased from April to July in accordance with seasonality. Carbon concentrations in the seagrass leaves and roots were similar (33.3 and 31.3% dry weight, respectively). In the habitats with a projective coverage of 50–80%, carbon stock in Z. marina tissues was (96.8 ± 37.4) g C·m−2; with 100% coverage, the value increased to 253 g C·m−2. Corg concentration in bottom sediments of the Srednyaya Bight ranged within 0.04–0.46% and correlated with content of silt fractions. Under dense Z. marina coverage, Corg content and the fraction of silt particles in sediments were higher than under sparse ones. The vertical distribution of Corg concentration within the upper 15–35-cm layer did not reveal a downward trend in the cores. The main factor controlling Corg content was the particle-size distribution of sediments, which suggests a weak expression of reduction diagenesis and the effect of wave mixing of the upper layer of sandy sediments. Data on the bulk density and Corg concentration in sediments allowed to calculate carbon stock for the layers of 0.25 and 1 m. The quota of organic carbon in the seagrass tissues did not exceed a third of its amount in the upper layer (0.25 m) of underlying sandy sediments. When extrapolated to a 1 m thick layer, the quota of bottom sediments to Corg pool exceeds 90%. Organic carbon enrichment of sandy sediments under the seagrass beds compared to sands of similar particle size beyond the seagrass beds indicates a significant role of Z. marina in carbon storage, even in the habitats with the lack of stable and intensive sedimentation. The major factor controlling carbon stock in Z. marina ecosystems is Corg content in underlying bottom sediments which depends primarily on their particle-size distribution. In this case, the range of variation in carbon stock in the upper layer is an order of magnitude or more. Maps of the seagrass distribution in April and July 2021 were built. The absolute values of carbon stock were calculated, both accumulated in Z. marina biomass and deposited in the seagrass-covered sediments. The area of potential Z. marina distribution in the Srednyaya Bight was modelled using the MaxEnt 3.4.4 program. According to the results, areas with a predicted probability exceeding 0.5 for the seagrass occurrence occupy about a third of the total area of the bight; out of them, the area with a probability of Z. marina occurrence exceeding 0.75 accounts for 11.83 hectares. In fact, the seagrass meadows occupied > 70% of the area with a predicted probability of the species occurrence exceeding 0.5. As shown, the assessment of the contribution of seagrass ecosystems to the storage of carbon accumulating in the coastal zone requires differentiation of water areas by sedimentation regimes and types of bottom sediments. Moreover, the creation of databases with data on Corg concentration and stock per unit area is needed. Information on the areas of ecosystem distribution obtained by direct mapping and remote sensing is of high significance as well.
Authors
References
Арзамасцев И. С., Преображенский Б. В. Атлас подводных ландшафтов Японского моря. Москва : Наука, 1990. 222 с. [Arzamastsev I. S., Preobrazhensky B. V. Atlas podvodnykh landshaftov Yaponskogo morya. Moscow : Nauka, 1990, 222 p. (in Russ.)]
Жариков В. В., Базаров К. Ю., Егидарев Е. Г. Использование данных дистанционного зондирования при картографировании подводных ландшафтов бухты Средней (залив Петра Великого, Японское море) // География и природные ресурсы. 2017. № 2. С. 190–198. [Zharikov V. V., Bazarov K. Y., Egidarev E. G. Use of remotely sensed data in mapping underwater landscapes of Srednyaya Bay (Peter the Great Gulf, Sea of Japan). Geografiya i prirodnye resursy, 2017, no. 2, pp. 190–198. (in Russ.)]
Жариков В. В., Базаров К. Ю., Егидарев Е. Г., Лебедев А. М. Использование данных LANDSAT для картографирования высшей водной растительности Дальневосточного морского заповедника // Океанология. 2018. Т. 58, № 3. С. 521–531. [Zharikov V. V., Bazarov K. Y., Egidarev E. G., Lebedev A. M. Application of LANDSAT data for mapping higher aquatic vegetation of the Far East Marine Reserve. Okeanologiya, 2018, vol. 58, no. 3, pp. 521–531. (in Russ.)]. https://doi.org/10.7868/S0030157418030164
Колпаков Н. В. Продукция макрофитов в эстуариях Приморья // Известия ТИНРО. 2013. Т. 174. С. 135–148. [Kolpakov N. V. Primary production of macrophytes in estuaries of Primorye. Izvestiya TINRO, 2013, vol. 174, pp. 135–148. (in Russ.)]
Короткий А. М., Худяков Г. И. Экзогенные геоморфологические системы морских побережий. Москва : Наука, 1990, 216 с. [Korotky A. M., Khudyakov G. I. Ekzogennye geomorfologicheskie sistemy morskikh poberezhii. Moscow : Nauka, 1990, 216 p. (in Russ.)]
Лазарюк А. Ю., Радовец А. В., Христофорова Н. К. Влияние тайфуна Майсак на экологическую ситуацию в материковых прибрежьях Дальневосточного морского заповедника в сентябре 2020 г. (Приморский край, Россия). Биота и среда природных территорий. 2021. № 4. С. 85–101. [Lazaryuk A. Yu., Radovets A. V., Khristoforova N. K. Environmental impact of typhoon Maysak on the mainland coast of the Far Eastern Marine Biosphere Reserve in September 2020 (Primorsky Krai, Russia). Biota i sreda prirodnykh territorii, 2021, no. 4, pp. 85–101. (in Russ.)]. https://doi.org/10.37102/2782-1978_2021_4_4
Маркевич А. И. Распределение рыб в прибрежных биотопах бухты Западной острова Фуругельма: изменения с 1991 по 1996 г. // Экологическое состояние и биота юго-западной части залива Петра Великого и устья реки Туманной. Владивосток : Дальнаука, 2002. Т. 3. С. 137–148. [Markevich A. I. Raspredelenie ryb v pribrezhnykh biotopakh bukhty Zapadnoi ostrova Furugel’ma: izmeneniya s 1991 po 1996 g. In: Ecological Condition and Biota of Southwest Part of the Peter the Great Bay and Mouth of the Tumannaya River. Vladivostok : Dal’nauka, 2002, vol. 3, pp. 137–148. (in Russ.)]
Мануйлов В. А. Структура донных ландшафтов береговой зоны залива Петра Великого // Донные ландшафты Японского моря : сборник научных трудов. Владивосток : ДВО АН СССР, 1987. С. 22–43. [Manuilov V. A. Struktura donnykh landshaftov beregovoi zony zaliva Petra Velikogo. In: Donnye landshafty Yaponskogo morya : sbornik nauchnykh trudov. Vladivostok : DVO AN SSSR, 1987, pp. 22–43. (in Russ.)]
Паймеева Л. Г. Распределение зарослей зостеры в заливе Петра Великого // Известия ТИНРО. 1973. Т. 87. С. 145–148. [Paimeyeva L. G. Distribution of Zostera stocks in the Bay of Peter the Great. Izvestiya TINRO, 1973, vol. 87, pp. 145–148. (in Russ.)]
Паймеева Л. Г. Распространение и запасы зостеры в Приморье от мыса Поворотного до мыса Белкина // Исследования по биологии рыб и промысловой океанографии. Владивосток : ТИНРО, 1979. Вып. 10. С. 149–154. [Paimeeva L. G. Rasprostranenie i zapasy zostery v Primor’e ot mysa Povorotnogo do mysa Belkina. In: Issledovaniya po biologii ryb i promyslovoi okeanografii. Vladivostok : TINRO, 1979, iss. 10, pp. 149–154. (in Russ.)]
Романкевич Е. А. Геохимия органического вещества в океане. Москва : Наука, 1977, 256 с. [Romankevich E. A. Geokhimiya organicheskogo veshchestva v okeane. Moscow : Nauka, 1977, 256 p. (in Russ.)]
Суханов В. В. Научная графика на компьютере. Владивосток : Дальнаука, 2005. 355 с. [Sukhanov V. V. Nauchnaya grafika na komp’yutere. Vladivostok : Dal’nauka, 2005, 355 p. (in Russ.)]
Тищенко П. Я., Шкирникова Е. М., Горячев В. А., Рюмина А. А., Сагалаев С. Г., Тищенко П. П., Уланова О. А., Тибенко Е. Ю. Депонированный органический углерод мелководных бухт залива Петра Великого (Японское море) // Геохимия. 2022. Т. 67, № 10. С. 1004–1012. [Tishchenko P. Ya., Shkirnikova E. M., Goryachev V. A., Ryumina A. A., Sagalaev S. G., Tishchenko P. P., Ulanova O. A., Tibenko E. Yu. Accumulated organic carbon in the sediments of shallow bights of the Peter the Great Bay, Sea of Japan. Geokhimiya, 2022, vol. 67, no. 10, pp. 1004–1012. (in Russ.)]. https://doi.org/10.31857/S0016752522100119
Bertelli C. M., Stokes H. J., Bull J. C., Unsworth R. K. F. The use of habitat suitability modelling for seagrass: A review. Frontiers in Marine Science, 2022, vol. 9, art. no. 997831 (8 p.). https://doi.org/10.3389/fmars.2022.997831
Bouillon S., Boschker H. T. S. Bacterial carbon sources in coastal sediments: A cross-system analysis based on stable isotope data of biomarkers. Biogeosciences, 2006, vol. 3, iss. 2, pp. 175–185. https://doi.org/10.5194/bg-3-175-2006
Bramante J. F., Ali S. M., Ziegler A. D., Sin T. M. Decadal biomass and area changes in a multi-species meadow in Singapore: Application of multi-resolution satellite imagery. Botanica Marina, 2018, vol. 61, iss. 3, pp. 289–304. https://doi.org/10.1515/bot-2017-0064
Dahl M., Deyanova D., Gütschow S., Asplund M. E., Lyimo L. D., Karamfilov V., Santos R., Björk M., Gullström M. Sediment properties as important predictors of carbon storage in Zostera marina meadows: A comparison of four European areas. PLoS ONE, 2016, vol. 11, iss. 12, art. no. e0167493 (21 p.). https://doi.org/10.1371/journal.pone.0167493
Duarte C. M., Middelburg J. J., Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2005, vol. 2, iss. 1, pp. 1–8. https://doi.org/10.5194/bg-2-1-2005
Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E., Yates C. J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, vol. 17, iss. 1, pp. 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fourqurean J. W., Duarte C. M., Kennedy H., Marbà N., Holmer M., Mateo M. A., Apostolaki E. T., Kendrick G. A., Krause-Jensen D., McGlathery K. J., Serrano O. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, vol. 5, pp. 505–509. https://doi.org/10.1038/ngeo1477
Gullström M., Lyimo L. D., Dahl M., Samuelsson G. S., Eggertsen M., Anderberg E., Rasmusson L. M., Linderholm H. W., Knudby A., Bandeira S., Nordlund L. M., Björk M. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant–sediment processes, and landscape context: Insights from the western Indian Ocean. Ecosystems, 2018, vol. 21, iss. 3, pp. 551–566. https://doi.org/10.1007/s10021-017-0170-8
Hammer Ø., Harper D. A. T., Ryan P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, vol. 4, iss. 1, art. no. 4 (9 p.).
Kennedy H., Beggins J., Duarte C. M., Fourqurean J. W., Holmer M., Marbà N., Middelburg J. J. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 2010, vol. 24, iss. 4, art. no. GB4026 (8 p.). https://doi.org/10.1029/2010GB003848
Kennedy H., Pagès J. F., Lagomasino D., Arias-Ortiz A., Colarusso P., Fourqurean J. W., Githaiga M. N., Howard J. L., Krause-Jensen D., Kuwae T., Lavery P. S., Macreadie P. I., Marbà N., Masqué P., Mazarrasa I., Miyajima T., Serrano O., Duarte C. M. Species traits and geomorphic setting as drivers of global soil carbon stocks in seagrass meadows. Global Biogeochemical Cycles, 2022, vol. 36, iss. 10, art. no. e2022GB007481 (18 p.). https://doi.org/10.1029/2022GB007481
Kuwae T., Watanabe A., Yoshihara S., Suehiro F., Sugimura Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Marine Policy, 2022, vol. 138, art. no. 104996 (11 p.). https://doi.org/10.1016/j.marpol.2022.104996
Lafratta A., Serrano O., Masqué P., Mateo M. A., Fernandes M., Gaylard S., Lavery P. S. Challenges to select suitable habitats and demonstrate ‘additionality’ in Blue Carbon projects: A seagrass case study. Ocean & Coastal Management, 2020, vol. 197, art. no. 105295 (8 p.). https://doi.org/10.1016/j.ocecoaman.2020.105295
Lei T., Wang D., Yu X., Ma S., Zhao W., Cui C., Meng J., Tao S., Guan D. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 2023, vol. 622, pp. 514–520. https://doi.org/10.1038/s41586-023-06486-7
Marbà N., Arias-Ortiz A., Masqué P., Kendrick G. A., Mazarrasa I., Bastyan G. R., Garcia-Orellana J., Duarte C. M. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology, 2015, vol. 103, iss. 2, pp. 296–302. https://doi.org/10.1111/1365-2745.12370
Mazarrasa I., Marbà N., Garcia-Orellana J., Masqué P., Arias-Ortiz A., Duarte C. M. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. Limnology and Oceanography, 2017, vol. 62, iss. 4, pp. 1436–1450. https://doi.org/10.1002/lno.10510
McKenzie L. J., Langlois L. A., Roelfsema C. M. Improving approaches to mapping seagrass within the Great Barrier Reef: From field to spaceborne Earth observation. Remote Sensing, 2022, vol. 14, iss. 11, art. no. 2604 (28 p.). https://doi.org/10.3390/rs14112604
McLeod E., Chmura G. L., Bouillon S., Salm R., Björk M., Duarte C. M., Lovelock C. E., Schlesinger W. H., Silliman B. R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, vol. 9, iss. 10, pp. 552–560. https://doi.org/10.1890/110004
Miyajima T., Hori M., Hamaguchi M., Shimabukuro H., Yoshida G. Geophysical constraints for organic carbon sequestration capacity of Zostera marina seagrass meadows and surrounding habitats. Limnology and Oceanography, 2017, vol. 62, iss. 3, pp. 954–972. https://doi.org/10.1002/lno.10478
O’Brien J. M., Wong M. C., Stanley R. R. E. Fine-scale ensemble species distribution modeling of eelgrass (Zostera marina) to inform nearshore conservation planning and habitat management. Frontiers in Marine Science, 2022, vol. 9, art. no. 988858 (19 p.). https://doi.org/10.3389/fmars.2022.988858
Pham T. D., Xia J., Ha N. T., Bui D. T., Le N. N., Tekeuchi W. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors, 2019, vol. 19, iss. 8, art. no. 1933 (37 p.). https://doi.org/10.3390/s19081933
Phillips S. J., Anderson R. P., Schapire R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, vol. 190, iss. 3–4, pp. 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poursanidis D., Traganos D., Teixeira L., Shapiro A., Muaves L. Cloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2. Remote Sensing in Ecology and Conservation, 2021, vol. 7, iss. 2, pp. 275–291. https://doi.org/10.1002/rse2.187
Prentice C., Poppe K. L., Lutz M., Murray E., Stephens T. A., Spooner A., Hessing-Lewis M., Sanders-Smith R., Rybczyk J. M., Apple J., Short F. T., Gaeckle J., Helms A., Mattson C., Raymond W. W., Klinger T. A synthesis of blue carbon stocks, sources, and accumulation rates in eelgrass (Zostera marina) meadows in the Northeast Pacific. Global Biogeochemical Cycles, 2020, vol. 34, iss. 2, art. no. e2019GB006345 (16 p.). https://doi.org/10.1029/2019GB006345
Randazzo G., Italiano F., Micallef A., Tomasello A., Cassetti F. P., Zammit A., D’Amico S., Saliba O., Cascio M., Cavallaro F., Crupi A., Fontana M., Gregorio F., Lanza S., Colica E., Muzirafuti A. WebGIS implementation for dynamic mapping and visualization of coastal geospatial data: A case study of BESS project. Applied Sciences, 2021, vol. 11, iss. 17, art. no. 8233 (21 p.). https://doi.org/10.3390/app11178233
Röhr M. E., Holmer M., Baum J. K., Björk M., Boyer K., Chin D., Chalifour L., Cimon S., Cusson M., Dahl M., Deyanova D., Duffy J. E., Eklöf J. S., Geyer J. K., Griffin J. N., Gullström M., Hereu C. M., Hori M., Hovel K. A., Randall Hughes A., Jorgensen P., Kiriakopolos S., Moksnes P.-O., Nakaoka M., O’Connor M. I., Peterson B., Reiss K., Reynolds P. L., Rossi F., Ruesink J., Santos R., Stachowicz J. J., Tomas F., Lee K.-S., Unsworth R. K. F., Boström C. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Global Biogeochemical Cycles, 2018, vol. 32, iss. 10, pp. 1457–1475. https://doi.org/10.1029/2018GB005941
Samper-Villarreal J., Lovelock C. E., Saunders M. I., Roelfsema C., Mumby P. J. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 2016, vol. 61, iss. 3, pp. 938–952. https://doi.org/10.1002/lno.10262
Trémolières M. Plant response strategies to stress and disturbance: The case of aquatic plants. Journal of Biosciences, 2004, vol. 29, pp. 461–470. https://doi.org/10.1007/BF02712119
Valle M., van Katwijk M. M., de Jong D. J., Bouma T. J., Schipper A. M., Chust G., Benito B. M., Garmendia J. M., Borja Á. Comparing the performance of species distribution models of Zostera marina: Implications for conservation. Journal of Sea Research, 2013, vol. 83, pp. 56–64. https://doi.org/10.1016/j.seares.2013.03.002
van Katwijk M. M., Bos A. R., de Jonge V. N., Hanssen L. S. A. M., Hermus D. C. R., de Jong D. J. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin, 2009, vol. 58, iss. 2, pp. 179–188. https://doi.org/10.1016/j.marpolbul.2008.09.028