Localization of phytoplankton early spring bloom spots in the pelagic zone of the Barents Sea
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
Atlantification of the Barents Sea leads to a decrease in the area of ice cover and an increase in the ice-free period. This process affects the entire pelagic ecosystem of the Barents Sea, where the main part of the annual primary production of phytoplankton is formed during the spring bloom. Chlorophyll a concentration reflects changes in phytoplankton biomass and can serve as an indicator of its production characteristics. In the spring of 2021, hydrological characteristics of water masses, as well as the distribution of concentrations of chlorophyll a and nutrients, were studied in the ice-free water area of the Barents Sea. The year of 2021 was characterized by negative ice cover anomalies. The location and length of the areas of increased (or decreased) chlorophyll a concentrations were consistent with the alternation of water masses. Separate spots of early spring bloom were identified – in coastal waters in the southeastern and southwestern Barents Sea. In late March and early April 2021, maximum chlorophyll a concentrations in coastal waters reached values of about 1 mg·m−3. At the same time, in the Barents Sea and Arctic waters, the maximum content did not exceed 0.20 mg·m−3. The distribution of nutrients corresponded to that for the winter period when the vertical gradients of these parameters were not formed yet. The values of water saturation with oxygen exceeding 100% (to varying degrees throughout the studied area) characterized the activation of the photosynthesis process in the phytoplankton community. Analysis of long-term data showed that the subsequent active spring phytoplankton bloom in years with negative ice cover anomalies occurred already in the second or third decade of April in the Barents Sea water masses of various types – in Arctic, Atlantic, and coastal waters (maximum chlorophyll a concentration reached the value of 5.69 mg·m−3 in Arctic waters). In May, this process covered various types of water masses throughout the Barents Sea (maximum chlorophyll a content was of 5.08–5.77 mg·m−3). In abnormally cold years, the low position of the ice edge in March–April limited the possible area of phytoplankton development, and the active phase of its bloom (according to satellite data) occurred much later, in May. Atlantification of the Barents Sea contributes to the formation of several bloom spots and the distribution of spring bloom over a larger area, which might affect the annual production indicators of the entire pelagic zone.
Authors
References
Аксенов П. В., Иванов В. В. «Атлантификация» как вероятная причина сокращения площади морского льда в бассейне Нансена в зимний сезон // Проблемы Арктики и Антарктики. 2018. Т. 64, № 1. С. 42–54. [Aksenov P. V., Ivanov V. V. “Atlantification” as a possible cause for reducing of the sea-ice cover in the Nansen Basin in winter. Problemy Arktiki i Antarktiki, 2018, vol. 64, no. 1, pp. 42–54. (in Russ.)]. https://doi.org/10.30758/0555-2648-2018-64-1-42-54
Алексеев Г. В. Проявление и усиление глобального потепления в Арктике // Фундаментальная и прикладная климатология. 2015. Т. 1. С. 11–26. [Alekseev G. V. Development and amplification of global warming in the Arctic. Fundamental’naya i prikladnaya klimatologiya, 2015, vol. 1, pp. 11–26. (in Russ.)]
Кузнецов Л. Л., Шошина Е. В. Фитоценозы Баренцева моря (физиологические и структурные характеристики). Апатиты : Изд-во КНЦ РАН, 2003. 308 с. [Kuznetsov L. L., Shoshina E. V. Phytocenoses of the Barents Sea (Physiological and Structural Characteristics). Apatity : Izd-vo KNTs RAN, 2003, 308 p. (in Russ.)]
Мамаев О. И. Термохалинный анализ вод Мирового океана. Ленинград : Гидрометеоиздат, 1987. 296 с. [Mamaev O. I. Termokhalinnyi analiz vod Mirovogo okeana. Leningrad : Gidrometeoizdat, 1987, 296 p. (in Russ.)]
Ожигин В. К., Ившин В. А., Трофимов А. Г., Карсаков А. Л., Анциферов М. Ю. Воды Баренцева моря: структура, циркуляция, изменчивость. Мурманск : ПИНРО, 2016. 260 с. [Ozhigin V. K., Ivshin V. A., Trofimov A. G., Karsakov A. L., Antsiferov M. Yu. The Barents Sea Water: Structure, Circulation, Variability. Murmansk : PINRO, 2016, 260 p. (in Russ.)]
Планктон морей Западной Арктики / отв. ред. Г. Г. Матишов. Апатиты : Мурманский морской биологический институт, 1997. 352 с. [Plankton morei Zapadnoi Arktiki / G. G. Matishov (Ed.). Apatity : Murmanskii morskoi biologicheskii institut, 1997, 352 p. (in Russ.)]
Рейсовый отчёт комплексной экспедиции на НИС «Дальние Зеленцы» в Баренцево море (10.03–14.04.2021) / под ред. П. Р. Макаревича. Мурманск : ММБИ, 2021. 99 с. [Reisovyi otchet kompleksnoi ekspeditsii na NIS “Dal’nie Zelentsy” v Barentsevo more (10.03–14.04.2021) / P. R. Makarevich (Ed.). Murmansk : MMBI, 2021, 99 p. (in Russ.)]
Руководство по химическому анализу морских и пресных вод при экологическом мониторинге рыбохозяйственных водоёмов и перспективных для промысла районов Мирового океана. Москва : ВНИРО, 2003. 202 с. [Rukovodstvo po khimicheskomy analizu morskikh i presnykh vod pri ekologicheskom monitoringe rybokhozyaistvennykh vodoemov i perspektivnykh dlya promysla raionov Mirovogo okeana. Moscow : VNIRO, 2003, 202 p. (in Russ.)]
Химия океана : [в 2 т.]. Т. 1: Химия вод океана. Москва : Наука, 1979. 518 с. (Океанология). [Khimiya okeana : [in 2 vols]. Vol. 1: Khimiya vod okeana. Moscow : Nauka, 1979, 518 p. (Okeanologiya). (in Russ.)]
Aminot A., Ray F. Standard Procedure for the Determination of Chlorophyll a by Spectroscopic Methods. Copenhagen, Denmark : International Council for the Exploration of the Sea, 2000, 17 p. (ICES Techniques in Marine Environmental Sciences).
Barber D. G., Lukovich J. V., Keogak J., Baryluk S., Fortier L., Henry G. H. R. The changing climate of the Arctic. Arctic, 2008, vol. 61, no. 5, suppl. 1, pp. 7–26. https://doi.org/10.14430/arctic98
Biological Atlas of the Arctic Seas 2000: Plankton of the Barents and Kara Seas / Murmansk Marine Biological Institute, Russia ; Ocean Climate Laboratory, NODC/NOAA, USA. URL: https://www.nodc.noaa.gov/OC5/BARPLANK/start.html [accessed: 20.03.2022].
Boitsov V. D., Karsakov A. L., Trofimov A. G. Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES Journal of Marine Science, 2012, vol. 69, iss. 5, pp. 833–840. https://doi.org/10.1093/icesjms/fss075
Chemical Methods for Use in Marine Environment Monitoring. Paris : UNESCO, 1983, 53 p. (Intergovernmental Oceanographic Commission Manuals and Guides ; 12). https://doi.org/10.25607/OBP-1419
Comiso J. C., Hall D. K. Climate trends in the Arctic as observed from space. Climate Change, 2014, vol. 5, iss. 3, pp. 389–409. https://doi.org/10.1002/wcc.277
Determination of Photosynthetic Pigments in Sea-Water. Paris : UNESCO, 1966, 69 p. (Monographs on Oceanographic Methodology ; vol. 1).
Dong K., Kvile Ø. K., Stenseth N. C., Stige L. C. Associations among temperature, sea ice and phytoplankton bloom dynamics in the Barents Sea. Marine Ecology Progress Series, 2020, vol. 635, pp. 25–36. https://doi.org/10.3354/meps13218
Eilertsen H.-C., Hansen G. A., Svendsen H., Hegseth E. N. Onset of the spring phytoplankton bloom in the Barents Sea: Influence of changing light regime and other environmental factors. Proceedings of SPIE : Underwater Light Measurements, 1993, vol. 2048, pp. 20–32. https://doi.org/10.1117/12.165507
EOSDIS Worldview : [site]. URL: https://worldview.earthdata.nasa.gov/ [accessed: 25.03.2022].
Fujiwara A., Hirawake T., Suzuki K., Imai I., Saitoh S.-I. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences, 2014, vol. 11, iss. 7, pp. 1705–1716. https://doi.org/10.5194/bg-11-1705-2014
Johannessen O. M., Alexandrov V. Yu., Frolov I. Ye., Sandven S., Pettersson L. H., Bobylev L. P., Kloster K., Smirnov V. G., Mironov Ye. U., Babich N. G. Remote Sensing of Sea Ice in the Northern Sea Route. Studies and Applications. Chichester, UK : Praxis Publishing, 2007, 472 p. https://doi.org/10.1007/978-3-540-48840-8
Kahru M., Brotas V., Manzano-Sarabia M., Mitchell B. G. Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology, 2011, vol. 17, iss. 4, pp. 1733–1739. https://doi.org/10.1111/j.1365-2486.2010.02312.x
Kogeler J., Rey F. Ocean colour and the spatial and seasonal distribution of phytoplankton in the Barents Sea. International Journal of Remote Sensing, 1999, vol. 20, iss. 7, pp. 1303–1318. https://doi.org/10.1080/014311699212740
Lewis K. M., van Dijken G. L., Arrigo K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 2020, vol. 369, no. 6500, pp. 198–202. https://doi.org/10.1126/science.aay8380
Makarevich P., Druzhkova E., Larionov V. Primary producers of the Barents Sea. In: Diversity of Ecosystems / A. Mahamane (Ed.). London, UK : InTech Open, 2012, pp. 367–393. https://doi.org/10.5772/37512
Makarevich P. R., Vodopianova V. V., Bulavina A. S. Dynamics of the spatial chlorophyll-a distribution at the Polar Front in the marginal ice zone of the Barents Sea during Spring. Water, 2022, vol. 14, iss. 1, art. no. 101 (23 p.). https://doi.org/10.3390/w14010101
Makarevich P. R., Vodopianova V. V., Bulavina A. S., Vashchenko P. S., Ishkulova T. G. Features of the distribution of chlorophyll-a concentration along the western coast of the Novaya Zemlya archipelago in spring. Water, 2021, vol. 13, iss. 24, art. no. 3648 (14 p.). https://doi.org/10.3390/w13243648
Methods of Seawater Analysis / K. Grasshoff, K. Kremling, M. Ehrhardt (Eds). Weinheim ; New York ; Chichester ; Brisbane ; Toronto : Wiley-VCH, 1999, 600 p. https://doi.org/10.1002/9783527613984
Namyatov A. A. δ18O as a tracer of the main regularities of water mass mixing and transformation in the Barents, Kara, and Laptev seas. Journal of Hydrology, 2021a, vol. 593, art. no. 125813 (18 p.). https://doi.org/10.1016/j.jhydrol.2020.125813
Namyatov A. A. The relationship between geophysical processes and changes in the composition of the seawater of the Barents Sea in the course of their climatic variability. ESS Open Archive, 2021b, 38 p. https://doi.org/10.1002/essoar.10507159.1
Ocean Color NASA : [site]. URL: https://oceancolor.gsfc.nasa.gov/l3/ [accessed: 25.03.2022].
Oziel L., Neukermans G., Ardyna M., Lancelot C., Tison J.-L., Wassmann P., Sirven J., Ruiz-Pino D., Gascard J.-C. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. Journal of Geophysical Research Oceans, 2017, vol. 122, iss. 6, pp. 5121–5139. https://doi.org/10.1002/2016JC012582
Park J., Kug J., Bader J., Rolph R., Kwon M. Amplified Arctic warming by phytoplankton under greenhouse warming. The Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112, no. 19, pp. 5921–5926. https://doi.org/10.1073/pnas.1416884112
Qu B., Gabric A. J., Matrai P. A. The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea. Polar Biology, 2006, vol. 29, iss. 3, pp. 196–210. https://doi.org/10.1007/s00300-005-0040-2
Reigstad M., Wassmann P., Riser C., Øygarden S., Rey F. Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea. Journal of Marine Systems, 2002, vol. 38, iss. 1–2, pp. 9–29. https://doi.org/10.1016/S0924-7963(02)00167-7
Shu Q., Wang Q., Song Z., Qiao F.-L. The poleward enhanced Arctic Ocean cooling machine in a warming climate. Nature Communications, 2021, vol. 12, art. no. 2966 (9 p.). https://doi.org/10.1038/s41467-021-23321-7
Signorini S. R., McClain C. R. Environmental factors controlling the Barents Sea spring–summer phytoplankton blooms. Geophysical Research Letters, 2009, vol. 36, iss. 10, art. no. L10604 (5 p.). https://doi.org/10.1029/2009GL037695
Vodopianova V. V., Vaschenko P. S., Bulavina A. S. Monitoring of chlorophyll-a concentration in the ice edge zone of the Barents Sea in 2017–2018. IOP Conference Series: Earth and Environmental Science, 2019, vol. 263, art. no. 012005 (8 p.). https://doi.org/10.1088/1755-1315/263/1/012005
Wang Y., Xiang P., Kang J.-H., Ye Y.-Y., Lin G.-M., Yang Q.-L., Lin M. Microphytoplankton community structure in the western Arctic Ocean: Surface layer variability of geographic and temporal considerations in summer. Hydrobiologia, 2018, vol. 811, iss. 1, pp. 295–312. https://doi.org/10.1007/s10750-017-3500-0
Wassmann P. Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography, 2011, vol. 90, iss. 1–4, pp. 1–17. https://doi.org/10.1016/j.pocean.2011.02.002
Wassmann P., Reigstad M., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O. Food webs and carbon flux in the Barents Sea. Progress in Oceanography, 2006, vol. 71, iss. 2–4, pp. 232–287. https://doi.org/10.1016/j.pocean.2006.10.003
Zhichkin A. P. Peculiarities of interannual and seasonal variations of the Barents Sea ice coverage anomalies. Russian Meteorology and Hydrology, 2015, vol. 40, iss. 5, pp. 319–326. https://doi.org/10.3103/S1068373915050052