Эритроциты циркулирующей крови морского ерша Scorpaena porcus L. 1758 в условиях острой экспериментальной гипоксии
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Аннотация
В условиях краткосрочного эксперимента исследовали влияние острой гипоксии на морфофункциональное состояние эритроцитов морского ерша (Scorpaena porcus L. 1758). Рыб содержали при 8,5–8,7 мг O2·л-1 (100 % насыщение, контроль), 2,6 мг O2·л-1 (30 % насыщение) и 1,3 мг O2·л-1 (15 % насыщение) в течение 90 минут. При 30 % насыщении воды кислородом не наблюдали каких-либо изменений, показатели состояния эритроцитов сохранялись на уровне контрольных значений. При 15 % насыщении воды кислородом происходило угнетение эритропоэтических процессов, выраженное в преимущественном снижении содержания в крови наименее дифференцированных эритроидных форм (базофильных нормобластов). Одновременно отмечались набухание циркулирующих эритроцитов и лизис осмотически низкостойких и аномальных клеток, что приводило к снижению кислородной ёмкости крови и к росту осмотической резистентности циркулирующей эритроцитарной массы. Выявленный порядок изменений в системе красной крови способен индуцировать продукцию эритропоэтинов в почках и активизировать эритроидный росток в гемопоэтической ткани.
Авторы
Библиографические ссылки
Золотницкая Р. П. Методы гематологических исследований // Лабораторные методы исследования в клинике: справочник / ред. В. В. Меньшиков. Москва : Медицина, 1987. С. 106–148. [Zolotnitskaya R. P. Metody gematologicheskikh issledovanii. In: Laboratornye metody issledovaniya v klinike: spravochnik / V. V. Menshikov (Ed.). Moscow : Meditsina, 1987, pp. 106–148. (in Russ.)].
Золотова Т. Е. Экспериментальное исследование кроветворения у рыб : автореф. … дис. канд. биол. наук. Москва : МГУ, 1987. 24 с. [Zolotova T. E. Eksperimental’noe issledovanie krovetvoreniya u ryb : avtoref. dis. … kand. biol. nauk. Moscow : MSU, 1987, 24 p. (in Russ.)].
Парфенова И. А. Критические и пороговые напряжения кислорода у морских рыб различной толерантности к внешней гипоксии // Екологiя. Людина. Суспiльство : VІІ Міжнар. наук.-практ. конф. студентів, аспірантів та молодих вчених, Київ, 13–15 травня 2004. Київ, 2004. С. 53. [Parfenova I. A. Kriticheskie i porogovye napryazheniya kisloroda u morskikh ryb razlichnoi tolerantnosti k vneshnei gipoksii. In: Ekologiya. Liudyna. Suspilstvo: VІІ Mizhnar. nauk.-prakt. konf. studentiv, aspirantiv ta molodykh vchenykh, Kiev, 13–15 May, 2004. Kiev, 2004, pp. 53. (in Russ.)].
Пахрова О. А., Криштоп В. В., Ленчер О. С., Курчанинова М. Г., Румянцева Т. А. Динамика клеточных показателей эритроцитарной системы при адаптации к острой экспериментальной гипоксии головного мозга в зависимости от уровня стрессоустойчивости // Успехи современной науки. 2016. Т. 9, № 12. С. 99–104. [Pakhrova O. A., Krishtop V. V., Lencher O. S., Kurchaninova M. G., Rumyantseva T. A. Dinamika kletochnykh pokazatelei eritrotsitarnoi sistemy pri adaptatsii k ostroi eksperimental’noi gipoksii golovnogo mozga v zavisimosti ot urovnya stressoustoichivosti. Uspekhi sovremennoi nauki, 2016, vol. 9, no. 12, pp. 99–104. (in Russ.)].
Пахрова О. А., Ефремочкина О. С., Смолина Е. О., Криштоп В. В. Реакция эритроидного ростка кроветворных органов белых крыс при моделировании острой тотальной гипоксии головного мозга // Актуальные вопросы научных исследований : сб. науч. тр. III Междунар. науч.-практ. конф., Иваново, 15 июня 2016. Иваново : ИП Цветков А. А., 2016. С. 73–77. [Pakhrova O. A., Efremochkina O. S., Smolina E. O., Krishtop V. V. Reaktsiya eritroidnogo rostka krovetvornykh organov belykh krys pri modelirovanii ostroi total’noi gipoksii golovnogo mozga. In: Aktual’nye voprosi nauchnykh issledovanii : sb. nauch. tr. III Mezdunar. nauch.-prakt. konf., Ivanovo, 15 June, 2016. Ivanovo : IP Tsvetkov A. A., 2016, pp. 73–77. (in Russ.)].
Солдатов А. А. Особенности организации и функционирования системы красной крови рыб (обзор) // Журнал эволюционной биохимии и физиологии. 2005. Т. 41, № 3. С. 217–223. [Soldatov A. A. Osobennosti organizatsii i funktsionirovaniya sistemy krasnoi krovi ryb (obzor). Zhurnal evolutsionnoi biokhimii i fiziologii, 2005, vol. 41, no. 3, pp. 217–223. (in Russ.)].
Солдатов А. А. Формирование резервов депо крови в онтогенезе морских рыб // Экология моря. 1992. Вып. 42. С. 46–55. [Soldatov A. A. Development of the blood depot stores in the ontogenesis of the marine fishes. Ekologiya morya, 1992, vol. 42, pp. 46–55. (in Russ.)].
Солдатов А. А., Парфенова И. А., Коношенко С. В. Гемоглобиновая система черноморского бычка-кругляка в условиях экспериментальной гипоксии // Украинский биохимический журнал. 2004. Т. 76, № 3. С. 85–90. [Soldatov A. A., Parfenova I. A., Konoshenko S. V. Haemoglobin system of Black Sea round goby under experimental hypoxia conditions. Ukrainskii biokhimicheskii zhurnal, 2004, vol. 76, no. 3, pp. 85–90. (in Russ.)].
Солдатов А. А., Русинова О. С., Трусевич В. В., Звездина Т. Ф. Влияние гипоксии на биохимические показатели эритроцитов скорпены // Украинский биохимический журнал. 1994. Т. 66, № 5. С. 115–118. [Soldatov A. A., Rusinova O. S., Trusevich V. V., Zvezdina T. F. Vliyanie gipoksii na biokhimicheskie pokazateli eritrotsitov skorpeny. Ukrainskii biokhimicheskii zhurnal, 1994, vol. 66, no. 5, pp. 115–118. (in Russ.)].
Andreyeva A. Y., Soldatov A. A., Mukhanov V. S. The influence of acute hypoxia on the functional and morphological state of the black scorpionfish red blood cells. In Vitro Cellular & Developmental Biology – Animal, 2017, vol. 53, iss. 4, pp. 312–319. https://doi.org/10.1007/s11626-016-0111-4.
Bartosz G. Erythrocyte aging: Physical and chemical membrane changes. Gerontology, 1991, vol. 37, pp. 33–67. https://doi.org/10.1159/000213251.
Chou C.-F., Tohari S., Brenner S., Venkatesh B. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood, 2004, vol. 104, no. 5, pp. 1498–1503. https://doi.org/10.1182/blood-2003-10-3404.
Fago A., Carratore V., Di Prisco G., Feuerlein R. J., Sottrup-Jensen L., Weber R. E. The cathodic hemoglobin of Anguilla anguilla. Amino acid sequence and oxygen affinity and phosphate sensitivity. Journal of Biological Chemistry, 1995, vol. 270, pp. 18897–18902. https://doi.org/10.1074/jbc.270.32.18897.
Fänge R., Nilsson S. The fish spleen: structure and function. Experientia, 1985, vol. 41, iss. 2, pp. 152–158. https://doi.org/10.1007/BF02002607.
Feuerlein R. J., Weber R. E. Oxygen equilibria of cathodic eel hemoglobin analysed in terms of the NWC model and Adiar’s successive oxygenation theory. Journal of Comparative Physiology B, 1996, vol. 165, iss. 8, pp. 597–606. https://doi.org/10.1007/BF00301127.
Girish V., Vijayalakshmi A. Affordable image analysis using NIH Image / Image J. Indian Journal of Cancer, 2004, vol. 41, iss. 1, pp. 47. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.9608&rep=rep1&type=pdf.
Houston A. H., Roberts W. C., Kennington J. A. Hematological response in fish: pronephric and splenic involvements in the goldfish, Carassius auratus L. Fish Physiology and Biochemistry, 1996, vol. 15, iss. 6, pp. 481–489. https://doi.org/10.1007/BF01874922.
Kulkeaw K., Sugiyama D. Zebrafish erythropoiesis and the utility of fish as models of anemia. Stem Cell Research & Therapy, 2012, vol. 3, pp. 55. https://doi.org/10.1186/scrt146.
Lai J. C. C., Kakuta I., Mok H. O. L., Rummer J. L., Randall D. Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. Journal of Experimental Biology, 2006, vol. 209, pp. 2734–2738. https://doi.org/10.1242/jeb.02279.
Marinsky C. A., Houston A. H., Murad A. Effect of hypoxia on hemoglobin isomorph abundance in rainbow trout, Salmo gairdneri. Canadian Journal of Zoology, 1990, vol. 68, no. 5, pp. 884–888. https://doi.org/10.1139/z90-128.
Moritz K. M., Lim G. B., Wintour E. M. Developmental regulation of erythropoietin and erythropoiesis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 1997, vol. 273, no. 6, pp. R1829–R1844.
Nikinmaa M. The effect of adrenaline on the oxygen transport properties of Salmo gairdneri blood. Comparative Biochemistry and Physiology Part A: Physiology, 1982, vol. 71, iss. 2, pp. 353–356. https://doi.org/10.1016/0300-9629(82)90416-9.
Nikinmaa M. Control of red cell pH in teleost fishes. Annales Zoologici Fennici, 1986, vol. 23, no. 2, pp. 223–235.
Nikinmaa M., Cech J. J., Ryhaenen L., Salama A. Red cell function of carp (Cyprinus carpio) in acute hypoxia. Experimental Biology, 1987, vol. 47, no. 1, pp. 53–58.
Pellegrini M., Giardina B., Olianus A., Sanna M. T., Deiana A. M., Salvadori S., Di Prisco G., Tamburrini M., Corda M. Structure/Function relationship in the hemoglobin components from moray (Muraena helena). European Journal of Biochemistry, 1995, vol. 234, iss. 2, pp. 431–436. https://doi.org/10.1111/j.1432-1033.1995.431_b.x.
Soldatov A. A. Physiological aspects of effects of urethane anesthesia on the organism of marine fishes. Hydrobiological Journal, 2005, vol. 41, no. 1, pp. 113–126.
Soldatov A. A., Kukhareva T. A., Andreeva A. Yu., Parfenova I. A., Rychkova V. N., Zin’kova D. S. The functional morphology of erythrocytes of the black scorpion fish Scorpaena porcus (Linnaeus, 1758) (Scorpaeniformes: Scorpaenidae) during hypoxia. Russian Journal of Marine Biology, 2017, vol. 43, iss. 5, pp. 368–373. https://doi.org/10.1134/S1063074017050091.
Taiwo F. A. Hemoglobin of the lungfish Clarias lazera: Isolation and oxygen equilibrium studies. Comparative Biochemistry and Physiology Part A: Physiology, 1995, vol. 110, iss. 2, pp. 147–150. https://doi.org/10.1016/0300-9629(94)00144-I.
Wells R. W. G., Weber R. E. The spleen in hypoxic and exercised rainbow trout. Journal of Experimental Biology, 1990, vol. 150, pp. 461–466.
Wickramasinghe S. N. Erythropoietin and the human kidney: Evidence for an evolutionary link from studies of Salmo gairdneri. Comparative Biochemistry and Physiology Part A: Physiology, 1993, vol. 104, iss. 2, pp. 63–65. https://doi.org/10.1016/0300-9629(93)90009-S.