##plugins.themes.ibsscustom.article.main##

Данцюк Н. В., Кривенко О. В., Мансурова И. М., Дегтяр И. В. Новый штамм зелёной каротиногенной микроводоросли Coelastrella rubescens, перспективный для культивирования в климатических условиях юга России // Морской биологический журнал. 2025. Т. 10, № 4. С. 3-20. https://doi.org/10.21072/mbj.2025.10.4.01

##plugins.themes.ibsscustom.article.details##

Аннотация

Впервые из таллома эпилитного крымского лишайника выделена альгологически чистая культура зелёной каротиногенной микроводоросли рода Coelastrella Chodat (Scenedesmaceae, Sphaeropleales), которая характеризуется выраженной способностью к накоплению вторичных каротиноидов в условиях острого абиотического стресса. Детально описаны методы выделения фикобионта из малых навесок образца лишайника, получения альгологически чистой и аксеничной культур, адаптации клеток к условиям лабораторного культивирования и длительного хранения в коллекционном фонде. Выполнена таксономическая идентификация фикобионта с использованием морфологических подходов (световой и сканирующей электронной микроскопии) и молекулярно-генетических методов (анализа фрагмента последовательности региона ITS1 — 5.8S — ITS2 гена 18S rRNA). Полученный штамм внесён в каталог коллекции живых культур каротиногенных микроводорослей ФИЦ ИнБЮМ (https://algae.ibss-ras.ru) как IBSS-156 Coelastrella rubescens (Vinatzer) Kaufnerová & Eliás, 2013. Проведена оценка ростовых характеристик штамма IBSS-156 в условиях двухстадийной накопительной культуры. Получены данные, свидетельствующие о высоких, до (0,62 ± 0,11) сут−1, удельных скоростях роста культуры на вегетативной стадии. Динамика пигментного состава водорослей при действии комплексного стресса свидетельствует о накоплении вторичных каротиноидов. Показано, что регистрация спектров поглощения живых культур микроводорослей в видимой области может быть эффективным способом экспресс-оценки их состояния и скорости накопления кетокаротиноидов в биомассе в процессе двухстадийного культивирования. Результаты работы указывают на возможность выделения из крымских лишайников перспективных продуцентов астаксантина, которые могут быть предложены для массового культивирования в зонах с засушливым и жарким климатом, в том числе в Крыму и прилегающих районах юга России.

Авторы

Н. В. Данцюк

н. с.

https://orcid.org/0000-0003-0365-917X

https://elibrary.ru/author_items.asp?id=757663

О. В. Кривенко

в. н. с., к. б. н.

https://orcid.org/0000-0001-6292-5293

https://elibrary.ru/author_items.asp?id=933995

И. М. Мансурова

м. н. с.

https://orcid.org/0000-0001-7171-6231

https://elibrary.ru/author_items.asp?id=999258

И. В. Дегтяр

ассистент

https://orcid.org/0000-0003-3797-7360

https://elibrary.ru/author_items.asp?id=949201

Библиографические ссылки

Андреева В. М. Почвенные и аэрофильные зелёные водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Санкт-Петербург : Наука, 1998. 351 с. [Andreyeva V. M. Terrestrial and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). Saint Petersburg : Nauka, 1998, 351 p. (in Russ.)]

Войцехович А. Фотобионты лишайников: разнообразие, экология и взаимоотношения с микобионтами. Саарбрюккен, Германия : LAP LAMBERT Academic Publishing, 2013. 102 с. [Voitsekhovich A. Fotobionty lishainikov: raznoobrazie, ekologiya i vzaimootnosheniya s mikobiontami. Saarbrücken, Germany : LAP LAMBERT Academic Publishing, 2013, 102 p. (in Russ.)]

Гайсина Л. А., Фазлутдинова А. И., Кабиров Р. Р. Современные методы выделения и культивирования водорослей : учебное пособие. Уфа : Изд-во БГПУ, 2008. 152 с. [Gaisina L. A., Fazlutdinova A. I., Kabirov R. R. Sovremennye metody vydeleniya i kul’tivirovaniya vodoroslei : uchebnoe posobie. Ufa : Izd-vo BGPU, 2008, 152 p. (in Russ.)]. https://elibrary.ru/qktkil

ГОСТ 8050-85. Двуокись углерода газообразная и жидкая. Технические условия = Gaseous and liquid carbon dioxide. Specifications : межгосударственный стандарт : издание официальное : утверждён и введён в действие постановлением Государственного комитета СССР по стандартам от 29.07.85 № 2423 : взамен ГОСТ 8050-76 : дата введения 1987-01-01 / подготовлен Государственной ассоциацией «Агрохим». Москва : Стандартинформ, 2006. 25 с. [GOST 8050-85. Dvuokis’ ugleroda gazoobraznaya i zhidkaya. Tekhnicheskie usloviya = Gaseous and liquid carbon dioxide. Specifications : mezhgosudarstvennyi standart : izdanie ofitsial’noe : utverzhden i vveden v deistvie postanovleniem Gosudarstvennogo komiteta SSSR po standartam ot 29.07.85 no. 2423 : vzamen GOST 8050-76 : data vvedeniya 1987-01-01 / podgotovlen Gosudarstvennoi assotsiatsiei “Agrokhim”. Moscow : Standartinform, 2006, 25 p. (in Russ.)]

Данцюк Н. В., Челебиева Э. С., Минюк Г. С. Рабочая коллекция живых культур каротиногенных микроводорослей Института биологии южных морей имени А. О. Ковалевского // Морской биологический журнал. 2021. Т. 6, № 4. С. 3–18. [Dantsyuk N. V., Chelebieva E. S., Minyuk G. S. Working collection of carotenogenic microalgae living cultures of A. O. Kovalevsky Institute of Biology of the Southern Seas. Marine Biological Journal, 2021, vol. 6, no. 4, pp. 3–18. (in Russ.)]. https://doi.org/10.21072/mbj.2021.06.4.01

Минюк Г. С. Каротиногенные микроводоросли. База данных. А. с. № 2020621092. Заявка № 2020620921. 10.06.2020, опубл. 30.06.2020. Бюл. № 7. [Minyuk G. S. Karotinogennye mikrovodorosli. Baza dannykh. A. s. no. 2020621092. Zayavka no. 2020620921. 10.06.2020, opubl. 30.06.2020. Byul. no. 7. (in Russ.)]

Минюк Г. С., Челебиева Э. С., Чубчикова И. Н., Данцюк Н. В., Дробецкая И. В., Сахонь Е. Г., Чивкунова О. Б., Чеканов К. А., Лобакова Е. С., Сидоров Р. А., Соловченко А. Е. Влияние pH и CO2 на рост и метаболизм микроводоросли Coelastrella (Scotiellopsis) rubescens // Физиология растений. 2016. Т. 63, вып. 4. С. 601–610. [Minyuk G. S., Chelebieva E. S., Chubchikova I. N., Dantsyuk N. V., Drobetskaya I. V., Sakhon E. G., Chivkunova O. B., Chekanov K. A., Lobakova E. S., Sidorov R. A., Solovchenko A. E. pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism. Fiziologiya rastenii, 2016, vol. 63, iss. 4, pp. 601–610. (in Russ.)]. http://doi.org/10.7868/S0015330316040102

Мокросноп В. М., Золотарёва Е. К. Влияние фунгицидов на рост культуры микроводоросли Euglena gracilis Klebs (Euglenophyta) // Альгология. 2012. Т. 22, № 4. С. 337–344. [Mokrosnop V. M., Zolotareva E. K. The effect of selected fungicides on growth of Euglena gracilis Klebs (Euglenophyta) culture. Al’gologiya, 2012, vol. 22, no. 4, pp. 337–344. (in Russ.)]. https://doi.org/10.1615/InterJAlgae.v15.i2.60

Рылькова О. А., Боровков А. Б., Ханайченко А. Н., Харчук И. А., Гудвилович И. Н., Лишаев В. Н. Особенности пробоподготовки образцов монадных форм микроводорослей для сканирующей электронной микроскопии // Биоразнообразие и устойчивое развитие. 2024. Т. 8, № 4. С. 62–74. [Rylkova O. A., Borovkov A. B., Khanaychenko A. N., Kharchuk I. A., Gudvilovich I. N., Lishaev V. N. Peculiarities of sample preparation of samples of monadic forms of microalgae for scanning electron microscopy. Bioraznoobrazie i ustoichivoe razvitie, 2024, vol. 8, no. 4, pp. 62–74. (in Russ.)]. https://elibrary.ru/afkodh

Темралеева А. Д., Минчева Е. В., Букин Ю. С., Андреева А. М. Современные методы выделения, культивирования и идентификации зелёных водорослей (Chlorophyta). Кострома : Костромской печатный дом, 2014. 215 с. [Temraleeva A. D., Mincheva E. V., Bukin Yu. S., Andreeva A. M. Modern Methods of Isolation, Cultivation and Identification of Green Algae (Chlorophyta). Kostroma : Kostromskoi pechatnyi dom, 2014, 215 p. (in Russ.)]. https://elibrary.ru/uyyvqt

Чубчикова И. Н., Дробецкая И. В., Данцюк Н. В., Челебиева Э. С. Оптимизация метода фиксации пресноводных микроводорослей (Scenedesmaceae, Chlorophyta) для первичной идентификации с использованием сканирующей электронной микроскопии // Вопросы современной альгологии. 2022. № 1 (28). С. 102–109. [Chubchikova I. N., Drobetskaya I. V., Dantsyuk N. V., Chelebieva E. S. Optimization of freshwater microalgae (Scenedesmaceae, Chlorophyta) fixation method for primary taxonomic identification by scanning electron microscopy. Voprosy sovremennoi al’gologii, 2022, no. 1 (28), pp. 102–109. (in Russ.)]. https://doi.org/10.33624/2311-0147-2022-1(28)-102-109

Bačkor M., Hudák J., Ziegler W., Bačkorová M. Methods for isolation and cultivation of the eukaryotic lichen photobionts – looking for a universal method. A review. Thaiszia – Journal of Botany, 1998, vol. 8, pp. 1–6.

Bischoff H. W., Bold H. C. Phycological Studies. IV. Some Soil Algae from Enchanted Rock and Related Algal Species. Austin, TX : University of Texas, 1963, vol. 6318, 95 p.

Chelebieva E. S., Dantsyuk N. V., Chekanov K. A., Chubchikova I. N., Drobetskaya I. V., Minyuk G. S., Lobakova E. S., Solovchenko A. E. Identification and morphological-physiological characterization of astaxanthin producer strains of Haematococcus pluvialis from the Black Sea region. Applied Biochemistry and Microbiology, 2018, vol. 54, no. 6, pp. 639–648. https://doi.org/10.1134/S0003683818060078

Cheng X., Shah M. Astaxanthin from Haematococcus: Production, applications, and advances. In: Handbook of Food and Feed from Microalgae. Production, Application, Regulation, and Sustainability. London, UK ; San Diego, CA ; Cambridge, MA ; Oxford, UK : Academic Press, 2023, chap. 19, pp. 221–236. https://doi.org/10.1016/B978-0-323-99196-4.00033-4

Corato A., Le T. T., Baurain D., Jacques P., Remacle C., Franck F. A fast-growing oleaginous strain of Coelastrella capable of astaxanthin and canthaxanthin accumulation in phototrophy and heterotrophy. Life, 2022, vol. 12, iss. 3, art. no. 334 (21 p.). https://doi.org/10.3390/life12030334

Czeczuga B., Osorio H. S. Investigations on carotenoids in lichens. XXI. Astaxanthin, the dominant carotenoid in some lichens from Uruguay. Israel Journal of Plant Sciences, 1989, vol. 38, iss. 2–3, pp. 115–120.

Debnath T., Bandyopadhyay T. K., Vanitha K., Bobby Md. N., Tiwari O. N., Bhunia B., Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Research International, 2024, vol. 176, art. no. 113841 (18 p.). https://doi.org/10.1016/j.foodres.2023.113841

Fontaniella B., Molina M. C., Vicente C. An improved method for the separation of lichen symbionts. Phyton (Horn, Austria), 2000, vol. 40, fasc. 2, pp. 323–328.

Gasulla F., Guéra A., Barreno E. “A simple and rapid method for isolating lichen photobionts”. Symbiosis, 2010, vol. 51, iss. 2, pp. 175–179. https://doi.org/10.1007/s13199-010-0064-4

Goecke F., Noda J., Paliocha M., Gislerød H. R. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World Journal of Microbiology and Biotechnology, 2020, vol. 36, iss. 10, art. no. 149 (17 p.). https://doi.org/10.1007/s11274-020-02897-0

Han D., Li Y., Hu Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae, 2013, vol. 28, no. 2, pp. 131–147. https://doi.org/10.4490/algae.2013.28.2.131

Islam M. A., Magnusson M., Brown R. J., Ayoko G. A., Nabi M. N., Heimann K. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 2013, vol. 6, iss. 11, pp. 5676–5702. https://doi.org/10.3390/en6115676

Kan Y., Pan J. A one-shot solution to bacterial and fungal contamination in the green alga Chlamydomonas reinhardtii culture by using an antibiotic cocktail. Journal of Phycology, 2010, vol. 46, iss. 6, pp. 1356–1358. https://doi.org/10.1111/j.1529-8817.2010.00904.x

Karpagam R., Preeti R., Ashokkumar B., Varalakshmi P. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicology and Environmental Safety, 2015, vol. 121, pp. 253–257. https://doi.org/10.1016/j.ecoenv.2015.03.015

Katoh K., Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics, 2010, vol. 26, iss. 15, pp. 1899–1900. https://doi.org/10.1093/bioinformatics/btq224

Kaufnerová V., Eliáš M. The demise of the genus Scotiellopsis Vinatzer (Chlorophyta). Nova Hedwigia, 2013, Bd 97, Heft 3–4, S. 415–428. https://doi.org/10.1127/0029-5035/2013/0116

Kawasaki S., Yoshida R., Ohkoshi K., Toyoshima H. Coelastrella astaxanthina sp. nov. (Sphaeropleales, Chlorophyceae), a novel microalga isolated from an asphalt surface in midsummer in Japan. Phycological Research, 2020, vol. 68, iss. 2, pp. 107–114. https://doi.org/10.1111/pre.12412

Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, vol. 16, iss. 2, pp. 111–120. https://doi.org/10.1007/bf01731581

Krivina E., Sinetova M., Zadneprovskaya E., Ivanova M., Starikov A., Shibzukhova K., Lobakova E., Bukin Yu., Portnov A., Temraleeva A. The genus Coelastrella (Chlorophyceae, Chlorophyta): Molecular species delimitation, biotechnological potential, and description of a new species Coelastrella affinis sp. nov., based on an integrative taxonomic approach. Antonie van Leeuwenhoek, 2024, vol. 117, iss. 1, art. no. 113 (33 p.). https://doi.org/10.1007/s10482-024-02008-1

Lemoine Y., Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress. Photosynthesis Research, 2010, vol. 106, iss. 1–2, pp. 155–177. https://doi.org/10.1007/s11120-010-9583-3

Loureiro L., Morais J., Silva R., Martins J. T., Geada P., Vasconcelos V., Vicente A. A. Isolation and identification of lichen photobionts collected from different environments in north of Portugal and evaluation of bioactivities of their extracts. Foods, 2024, vol. 13, iss. 11, art. no. 1759 (18 p.). https://doi.org/10.3390/foods13111759

Maltsev Y., Krivova Z., Maltseva S., Maltseva K., Gorshkova E., Kulikovskiy M. Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Scientific Reports, 2021, vol. 11, art. no. 19818 (13 p.). https://doi.org/10.1038/s41598-021-99376-9

Mikhailyuk T., Glaser K., Tsarenko P., Demchenko E., Karsten U. Composition of biological soil crusts from sand dunes of the Baltic Sea coast in the context of an integrative approach to the taxonomy of microalgae and cyanobacteria. European Journal of Phycology, 2019, vol. 54, iss. 3, pp. 263–290. https://doi.org/10.1080/09670262.2018.1557257

Minyuk G., Chelebieva E., Chubchikova I., Dantsyuk N., Drobetskaya I., Sakhon E., Chekanov K., Solovchenko A. Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae, 2017, vol. 32, iss. 3, pp. 245–259. https://doi.org/10.4490/algae.2017.32.8.6

Mohanasundaram Y., Arumugam N., Sarangam B., Alagarsamy A., Raja R. An introduction to Haematococcus. In: Haematococcus. Biochemistry, Biotechnology and Biomedical Applications / R. Raja, S. Hemaiswarya, M. Narayanan, S. Kandasamy, K. Jayappriyan (Eds). Singapore : Springer, 2023, pp. 1–10. https://doi.org/10.1007/978-981-99-2901-6_1

Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A. Database indexing for production MegaBLAST searches. Bioinformatics, 2008, vol. 24, iss. 16, pp. 1757–1764. https://doi.org/10.1093/bioinformatics/btn322

Mota G. C. P., Moraes L. B. S. D., Oliveira C. Y. B., Oliveira D. W. S., Abreu J. L. D., Dantas D. M. M., Gálvez A. O. Astaxanthin from Haematococcus pluvialis: Processes, applications, and market. Preparative Biochemistry & Biotechnology, 2022, vol. 52, iss. 5, pp. 598–609. https://doi.org/10.1080/10826068.2021.1966802

Nayana K., Sudhakar M. P., Arunkumar K. Biorefinery potential of Coelastrella biomass for fuel and bioproducts – a review. Biomass Conversion and Biorefinery, 2022, 14 p. https://doi.org/10.1007/s13399-022-02519-9

Patel A. K., Tambat V. S., Chen C. W., Chauhan A. S., Kumar P., Vadrale A. P., Huang C.-Y., Dong C., Singhania R. R. Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 2022, vol. 364, art. no. 128030 (12 p.). https://doi.org/10.1016/j.biortech.2022.128030

Shah M. R., Liang Y., Cheng J. J., Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 2016, vol. 7, art. no. 531 (28 p.). https://doi.org/10.3389/fpls.2016.00531

Solovchenko A., Minyuk G. The physiology of astaxanthin production by carotenogenic microalgae. In: Global Perspectives on Astaxanthin. From Industrial Production to Food, Health, and Pharmaceutical Applications / G. A. Ravishankar, A. Ranga Rao (Eds). London, UK ; San Diego, CA ; Cambridge, MA ; Oxford, UK : Academic Press, 2021, chap. 2, pp. 19–35. https://doi.org/10.1016/B978-0-12-823304-7.00026-X

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 2021, vol. 38, iss. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Trifinopoulos J., Nguyen L.-T., von Haeseler A., Minh B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 2016, vol. 44, iss. W1, pp. W232–W235. https://doi.org/10.1093/nar/gkw256

Voytsekhovich A., Beck A. Lichen photobionts of the rocky outcrops of Karadag massif (Crimean Peninsula). Symbiosis, 2016, vol. 68, iss. 1–3, pp. 9–24. https://doi.org/10.1007/s13199-015-0346-y

Wang Q., Song H., Liu X., Liu B., Hu Z., Liu G. Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. Journal of Phycology, 2019, vol. 55, iss. 6, pp. 1290–1305. https://doi.org/10.1111/jpy.12915

White T. J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. A Guide to Methods and Applications / M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. White (Eds). San Diego, CA ; New York : Academic Press, 1990, pp. 315–322.

Wood A. M., Everroad R. C., Wingard L. M. Measuring growth rates in microalgal cultures. In: Algal Culturing Techniques / R. A. Andersen (Ed.). New York : Elsevier Academic Press, 2005, chap. 18, pp. 269–286.

Zhang Z., Schwartz S., Wagner L., Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 2000, vol. 7, no. 1–2, pp. 203–214. https://doi.org/10.1089/10665270050081478

Финансирование

Работа профинансирована Российским научным фондом, грант № 24-26-20121 «Создание биоресурсной коллекции каротиногенных водорослей Крымского региона» (№ гос. регистрации 124102900026-9).

Статистика

Скачивания

Данные по скачиваниям пока не доступны.