##plugins.themes.bootstrap3.article.main##

Рыжик И. В., Салахов Д. О., Макаров М. В., Меньшакова М. Ю. Анализ физиолого-биохимических показателей клеток Acrosiphonia arcta (Dillwyn) Gain на ранней стадии формирования стресс-реакции под действием эмульсии дизельного топлива // Морской биологический журнал. 2024. Т. 9, № 1. С. 86-97. https://doi.org/10.21072/mbj.2024.09.1.07

##plugins.themes.bootstrap3.article.details##

Аннотация

Проведено исследование особенностей формирования стрессовой реакции в клетках зелёной водоросли Acrosiphonia arcta на воздействие эмульсии дизельного топлива. Проанализированы изменения показателей окислительного стресса (концентрация перекиси водорода и накопление продуктов перекисного окисления липидов), активность ферментов антиоксидантной системы, интенсивность фотосинтеза и состояние клеток. Показано, что в течение первых суток воздействия токсиканта в клетках происходит развитие плазмолиза и нарушение структуры хлоропластов. Стрессовая реакция формируется поэтапно: на первом этапе увеличивается количество перекиси водорода, изменяется концентрация продуктов перекисного окисления липидов, повышается активность супероксиддисмутазы; на втором этапе происходит активизация каталазы; к концу первых суток воздействия на фоне снижения активности каталазы увеличивается активность пероксидазы (третий этап). Интенсивность фотосинтеза снижается к концу эксперимента. Выдвинуто предположение, что под воздействием эмульсии дизельного топлива может происходить нарушение суточной динамики биологических циклов ряда ферментов.

Авторы

И. В. Рыжик

с. н. с., к. б. н.

https://orcid.org/0000-0003-3874-2379

https://elibrary.ru/author_items.asp?id=492900

Д. О. Салахов

м. н. с.

https://orcid.org/0000-0003-0889-9041

https://elibrary.ru/author_items.asp?id=1066578

М. В. Макаров

директор, д. б. н.

https://orcid.org/0000-0001-9277-6292

https://elibrary.ru/author_items.asp?id=108313

М. Ю. Меньшакова

зав. лабораторией, к. б. н.

https://orcid.org/0000-0003-0441-668X

https://elibrary.ru/author_items.asp?id=809569

Библиографические ссылки

Воскобойников Г. М., Лопушанская Е. М., Жаковская З. А., Метелькова Л. О., Матишов Г. Г. Об участии зелёной водоросли Ulvaria obscura в биоремедиации морской среды от нефтепродуктов // Доклады Академии наук. 2018. Т. 481, № 1. С. 111–113. [Voskoboinikov G. M., Lopushanskaya E. M., Zhakovskaya Z. A., Metelkova L. O., Matishov G. G. Participation of the green algae Ulvaria obscura in bioremediation of sea water from oil products. Doklady Akademii nauk, 2018, vol. 481, no. 1, pp. 111–113. (in Russ.)]. https://doi.org/10.31857/S086956520000064-3

Колупаев Ю. Е. Активные формы кислорода в растениях при действии стрессоров: образование и возможные функции // Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Біологія». 2007. Вип. 3 (12). С. 6–26. [Kolupaev Yu. Ye. Reactive oxygen species in plants at stressors action: Formation and possible functions. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriia “Biolohiia”, 2007, iss. 3 (12), pp. 6–26. (in Russ.)]

Колупаев Ю. Е., Карпец Ю. В. Формирование адаптивных реакций растений на действие абиотических стрессоров. Киев : Основа, 2010. 352 с. [Kolupaev Yu. Ye., Karpets Yu. V. Formirovanie adaptivnykh reaktsii rastenii na deistvie abioticheskikh stressorov. Kyiv : Osnova, 2010, 352 p. (in Russ.)]

Колупаев Ю. Е., Карпец Ю. В., Обозный А. И. Антиоксидантная система растений: участие в клеточной сигнализации и адаптации к действию стрессоров // Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Біологія». 2011. Вип. 1 (22). С. 6–34. [Kolupaev Yu. Ye., Karpets Yu. V., Obozniy O. I. Plants antioxidative system: Participation in cell signaling and adaptation to influence of stressors. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriia “Biolohiia”, 2011, iss. 1 (22), pp. 6–34. (in Russ.)]

Королюк М. А., Иванова Л. И., Майорова И. Г., Токарев В. Е. Метод определения активности каталазы. Лабораторное дело. 1988. № 1. С. 16–19. [Korolyuk M. A., Ivanova L. I., Maiorova I. G., Tokarev V. E. Metod opredeleniya aktivnosti katalazy. Laboratornoe delo, 1988, no. 1, pp. 16–19. (in Russ.)]

Методы биохимического исследования растений / под ред. А. Е. Ермакова ; 3-е издание, переработанное и дополненное. Ленинград : Агропромиздат, Ленинградское отделение, 1987. 429 с. [Metody biokhimicheskogo issledovaniya rastenii / A. I. Ermakov (Ed.) ; 3rd edition, revised & enlarged. Leningrad : Agropromizdat, Leningradskoe otdelenie, 1987, 429 p. (in Russ.)]

Мильчакова Н. А., Шахматова О. А. Каталазная активность массовых видов черноморских макроводорослей в градиенте хозяйственно-бытового загрязнения // Морской экологический журнал. 2007. Т. 6, № 2. С. 44–57. [Milchakova N. A., Shakhmatova O. A. Catalase activity of the widely-distributed macroalgae of the Black Sea by gradient of the sewage pollution. Morskoj ekologicheskij zhurnal, 2007, vol. 6, no. 2, pp. 44–57. (in Russ.)]. https://repository.marine-research.ru/handle/299011/906

Мирошниченко О. С. Биогенез, физиологическая роль и свойства каталазы // Биополимеры и клетка. 1992. Т. 8, № 6. С. 3–25. [Miroshnichenko O. S. Biogenesis, physiological role, and properties of catalase. Biopolimery i kletka, 1992, vol. 8, no. 6, pp. 3–25. (in Russ.)]. https://doi.org/10.7124/bc.00033C

Патин С. А. Нефтяные разливы и их воздействие на морскую среду и биоресурсы. Москва : Изд-во ВНИРО, 2008. 508 с. [Patin S. A. Oil Spills and Their Impact on the Marine Environment and Living Resources. Moscow : VNIRO Publishing, 2008, 508 p. (in Russ.)]

Рогожин В. В. Пероксидаза как компонент антиоксидантной системы живых организмов. Санкт-Петербург : ГИОРД, 2004. 240 с. [Rogozhin V. V. Peroksidaza kak komponent antioksidantnoi sistemy zhivykh organizmov. Saint Petersburg : GIORD, 2004, 240 p. (in Russ.)]

Степаньян О. В. Воздействие нефтяной плёнки на фотосинтез бурых водорослей Баренцева моря // Ботанический журнал. 2014. Т. 99, № 10. С. 1095–1100. [Stepanyan O. V. The oil film influence on photosynthesis of brown algae in the Barents Sea. Botanicheskii zhurnal, 2014, vol. 99, no. 10, pp. 1095–1100. (in Russ.)]

Шахматова О. А. Активность антиоксидантной системы некоторых черноморских гидробионтов в прибрежной акватории Севастополя : автореф. дис. … канд. биол. наук : 03.00.17. Севастополь, 2004. 21 с. [Shakhmatova O. A. Aktivnost’ antioksidantnoi sistemy nekotorykh chernomorskikh gidrobiontov v pribrezhnoi akvatorii Sevastopolya : avtoref. dis. … kand. biol. nauk : 03.00.17. Sevastopol, 2004, 21 p. (in Russ.)]. https://repository.marine-research.ru/handle/299011/9708

Alscher R. G., Erturk N., Heath L. S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, vol. 53, iss. 372, pp. 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331

Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, vol. 55, pp. 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Bellincampi D., Dipierro N., Salvi G., Cervone F., De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiology, 2000, vol. 122, iss. 4, pp. 1379–1386. https://doi.org/10.1104/pp.122.4.1379

Bokn T. Effects of diesel oil on commercial benthic algae in Norway. In: 1985 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), 25–28 February, 1985, Los Angeles, California. Washington DC : American Petroleum Institute, 1985, pp. 491–496. (International Oil Spill Conference (IOSC) proceedings ; vol. 1985, iss. 1).

Calderón-Delgado I. C., Mora-Solarte D. A., Velasco-Santamaría Y. M. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environmental Monitoring and Assessment, 2019, vol. 191, iss. 6, art. no. 399 (13 p.). https://doi.org/10.1007/s10661-019-7519-8

Carvalho A. M., Neto A. M. P., Tonon A. P., Pinto E., Cardozo K. H. M., Brigagão M. R. P. L., Barros M. P., Torres M. A., Magalhães P., Campos S. C. G., Guaratini T., Sigaud-Kutner T. C. S., Falcão V. R., Colepicolo P. Circadian protection against oxidative stress in marine algae. Hypnos, 2004, [vol.] 1 (suppl. 1), pp. 142–157.

Díaz-Báez M. C., Bustos Lopez M. C., Espinosa-Ramírez A. J. Pruebas de toxicidad acuática: fundamentos y métodos. Bogotá, Colombia : Universidad Nacional de Colombia, 2004, 118 p.

El Maghraby D., Hassan I. Photosynthetic and biochemical response of Ulva lactuca to marine pollution by polyaromatic hydrocarbons (PAHs) collected from different regions in Alexandria city, Egypt. Egyptian Journal of Botany, 2021, vol. 61, no. 2, pp. 467–478. http://dx.doi.org/10.21608/ejbo.2021.37571.1531

Esterbauer H., Cheeseman K. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 1990, vol. 186, pp. 407–421. https://doi.org/10.1016/0076-6879(90)86134-H

Geret F., Serafim A., Bebianno M. J. Antioxidant enzyme activities, metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus? Ecotoxicology, 2003, vol. 12, iss. 5, pp. 417–426. https://doi.org/10.1023/A:1026108306755

Giannopolitis C. N., Ries S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, vol. 59, iss. 2, pp. 309–314. https://doi.org/10.1104/pp.59.2.309

Inupakutika M. A., Sengupta S., Devireddy A. R., Azad R. K., Mittler R. The evolution of reactive oxygen species metabolism. Journal of Experimental Botany, 2016, vol. 67, iss. 21, pp. 5933–5943. https://doi.org/10.1093/jxb/erw382

Klindukh M., Dobychina E., Makarov M., Ryzhik I. Influence of diesel fuel on the composition and content of free amino acids in the green alga Acrosiphonia arcta. IOP Conference Series: Earth and Environmental Science, 2021, vol. 937, art. no. 022010 (5 p.). https://doi.org/10.1088/1755-1315/937/2/022010

Malavenda S. V. Macroalgae’s flora of the Kola Bay (the Barents Sea). Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 21, no. 2, pp. 245–252. https://doi.org/10.21443/1560-9278-2018-21-2-245-252

Mallick N. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: Response of the antioxidant system. Journal of Plant Physiology, 2004, vol. 161, iss. 5, pp. 591–597. https://doi.org/10.1078/0176-1617-01230

Migdal C., Serres M. Reactive oxygen species and oxidative stress. Médecine/Sciences, 2011, vol. 27, no. 4, pp. 405–412. https://doi.org/10.1051/medsci/2011274017

Nechev J. T., Khotimchenko S. V., Ivanova A. P., Stefanov K. L., Dimitrova-Konaklieva S. D., Andreev S., Popov S. S. Effect of diesel fuel pollution on the lipid composition of some wide-spread Black Sea algae and invertebrates. Zeitschrift für Naturforschung C, 2002, vol. 57, iss. 3–4, pp. 339–343. https://doi.org/10.1515/znc-2002-3-401

Pilatti F. K., Ramlov F., Schmidt E. C., Kreusch M., Pereira D. T., Costa C., de Oliveira E. R., Bauer C. M., Rocha M., Bouzon Z. L., Maraschin M. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline – biochemical and morphological alterations. Chemosphere, 2016, vol. 156, pp. 428–437. https://doi.org/10.1016/j.chemosphere.2016.04.126

Pokora W., Tukaj Z. The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. Ecotoxicology and Environmental Safety, 2010, vol. 73, iss. 6, pp. 1207–1213. https://doi.org/10.1016/j.ecoenv.2010.06.013

Ramadass K., Megharaj M., Venkateswarlu K., Naidu R. Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 2015, vol. 22, iss. 12, pp. 8890–8901. https://doi.org/10.1007/s11356-014-3403-9

Ramlov F., Carvalho T. J. G., Costa G. B., de Oliveira Rodrigues E. R., Bauer C. M., Schmidt É. C., Kreusch M. G., Moresco R., Bachiega Navarro B., Cabral D. Q., Bouzon Z. L., Antunes Horta P., Maraschin M. Hypnea musciformis (Wulfen) J. V. Lamour. (Gigartinales, Rhodophyta) responses to gasoline short-term exposure: Biochemical and cellular alterations. Acta Botanica Brasilica, 2019, vol. 33, iss. 1, pp. 116–127. https://doi.org/10.1590/0102-33062018abb0379

Ramlov F., Carvalho T. J. G., Schmidt É. C., Martins C. D. L., Kreusch M. G., de Oliveira Rodrigues E. R., Bauer C. M., Bouzon Z. L., Antunes Horta P., Maraschin M. Metabolic and cellular alterations induced by diesel oil in Hypnea musciformis (Wulfen) J. V. Lamour. (Gigartinales, Rhodophyta). Journal of Applied Phycology, 2014, vol. 26, iss. 4, pp. 1879–1888. https://doi.org/10.1007/s10811-013-0209-y

Regoli F., Gorbi S., Frenzilli G., Nigro M., Corsi I., Focardi S., Winston G. W. Oxidative stress in ecotoxicology: From the analysis of individual antioxidants to a more integrated approach. Marine Environmental Research, 2002, vol. 54, iss. 3–5, pp. 419–423. https://doi.org/10.1016/S0141-1136(02)00146-0

Ryzhik I., Pugovkin D., Makarov M., Roleda M. Y., Basova L., Voskoboynikov G. Tolerance of Fucus vesiculosus exposed to diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria. Environmental Pollution, 2019, vol. 254, pt B, art. no. 113072 (6 p.). https://doi.org/10.1016/j.envpol.2019.113072

Ryzhik I. V., Makarov M. V. Effect of diesel fuel film on green algae Ulva lactuca L. and Ulvaria obscura (Kützing) Gayral ex Bliding of the Barents Sea. IOP Conference Series: Earth and Environmental Science, 2019, vol. 302, art. no. 012029 (6 p.). https://doi.org/10.1088/1755-1315/302/1/012029

Salakhov D., Pugovkin D., Ryzhik I., Voskoboinikov G. The changes in the morpho-functional state of the green alga Ulva intestinalis L. in the Barents Sea under the influence of diesel fuel. IOP Conference Series: Earth and Environmental Science, 2021, vol. 937, art. no. 022059 (8 p.). https://doi.org/10.1088/1755-1315/937/2/022059

Salakhov D., Pugovkin D., Ryzhik I., Voskoboinikov G. The influence of diesel fuel on morpho-functional state of Ulvaria obscura (Chlorophyta). IOP Conference Series: Earth and Environmental Science, 2020, vol. 539, art. no. 012202 (7 p.). https://doi.org/10.1088/1755-1315/539/1/012202

Sardi A. E., Sandrini-Neto L., da S. Pereira L., Silva de Assis H., Martins C. C., da Cunha Lana P., Camus L. Oxidative stress in two tropical species after exposure to diesel oil. Environmental Science and Pollution Research, 2016, vol. 23, iss. 20, pp. 20952–20962. https://doi.org/10.1007/s11356-016-7280-2

Shakhmatova O., Ryzhik I. Seasonal dynamics of catalase activity in Cystoseira crinita (Black Sea) and Fucus vesiculosus (Barents Sea). Ecological Chemistry and Engineering S, 2020, vol. 27, iss. 4, pp. 643–650. http://dx.doi.org/10.2478/eces-2020-0041

Shakhmatova O. A., Milchakova N. A. Effect of environmental conditions on Black Sea macroalgae catalase activity. International Journal on Algae, 2014, vol. 16, iss. 4, pp. 377–391. http://doi.org/10.1615/InterJAlgae.v16.i4.70

Shiu R.-F., Chiu M.-H., Vazquez C. I., Tsai Y.-Y., Le A., Kagiri A., Xu C., Kamalanathan M., Bacosa H. P., Doyle S. M., Sylvan J. B., Santschi P. H., Quigg A., Chin W.-C. Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Marine Chemistry, 2020, vol. 223, art. no. 103789 (8 p.). https://doi.org/10.1016/j.marchem.2020.103789

Sussmann A. V., Scrosati R. A. Morphological variation in Acrosiphonia arcta (Codiolales, Chlorophyta) from environmentally different habitats in Nova Scotia, Canada. Rhodora, 2011, vol. 113, no. 953, pp. 87–105. https://doi.org/10.3119/10-06.1

Thélin I. Effets, en culture, de deux pétroles bruts et d’un dispersant pétrolier sur les zygotes et les plantules de Fucus serratus Linnaeus (Fucales, Phaeophyceae) = Effects in culture of two crude oils and one oil dispersant on zygotes and germlings of Fucus serratus Linnaeus (Fucales, Phaeophyceae). Botanica Marina, 1981, vol. 24, pp. 515–519. https://doi.org/10.1515/botm.1981.24.10.515

Vega-López A., Ayala-López G., Posadas-Espadas B. P., Olivares-Rubio H. F., Dzul-Caamal R. Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, vol. 165, iss. 4, pp. 498–507. https://doi.org/10.1016/j.cbpa.2013.01.026

Voskoboinikov G. M., Matishov G. G., Bykov O. D., Maslova T. G., Sherstneva O. A., Usov A. I. Resistance of marine macrophytes to oil pollution. Doklady Biological Sciences, 2004, vol. 397, iss. 1–6, pp. 340–341. https://doi.org/10.1023/B:DOBS.0000039711.48557.16

Voskoboinikov G. M., Ryzhik I. V., Salakhov D. O., Metelkova L. O., Zhakovskaya Z. A., Lopushanskaya E. M. Absorption and conversion of diesel fuel by the red alga Palmaria palmata (Linnaeus) F. Weber et D. Mohr, 1805 (Rhodophyta): The potential role of alga in bioremediation of sea water. Russian Journal of Marine Biology, 2020, vol. 46, iss. 2, pp. 113–118. https://doi.org/10.1134/S1063074020020108

Wang L., Zheng B., Meng W. Photo-induced toxicity of four polycyclic aromatic hydrocarbons, singly and in combination, to the marine diatom Phaeodactylum tricornutum. Ecotoxicology and Environmental Safety, 2008, vol. 71, iss. 2, pp. 465–472. https://doi.org/10.1016/j.ecoenv.2007.12.019

Zhang J. F., Sun Y. Y., Shen H., Liu H., Wang X. R., Wu J. C., Xue Y. Q. Antioxidant response of Daphnia magna exposed to no. 20 diesel oil. Chemical Speciation & Bioavailability, 2004, vol. 16, iss. 4, pp. 139–144. https://doi.org/10.3184/095422904782775027

Финансирование

Исследование выполнено в рамках гранта Российского научного фонда № 22-17-00243 «Радиационная океанология и геоэкология прибрежного шельфа Баренцева и Белого морей. Биокосные взаимодействия в системе донные отложения — вода — макроводоросли — микроорганизмы, их роль в ремедиации морской прибрежной экосистемы при радиационном и химическом загрязнении в условиях Арктики».

Статистика

Скачивания

Данные скачивания пока недоступны.