Zaytseva T., Safronova V., Russu A., Kuzikova I., Medvedeva N. Nonylphenol biodegradation by the bacterium Raoultella planticola strain F8 isolated from the sediment of the Gulf of Finland, the Baltic Sea. Marine Biological Journal, 2024, vol. 9, no. 1, pp. 18-31. https://doi.org/10.21072/mbj.2024.09.1.02



Nonylphenol (NP) is a ubiquitous environmental pollutant of major concern due to its toxicity to hydrobionts, animals, and humans. Moreover, NP is known as an endocrine disruptor. The aim of this study is to isolate from bottom sediments sampled in the southern Gulf of Finland (the Baltic Sea) and identify a highly-efficient NP-degrading bacterial strain and to analyze its NP-degrading capacity at different levels of temperature, initial pH, dissolved oxygen concentrations, and initial NP content. The isolated strain F8 was identified by phenotypic traits using standard methods and by Sanger sequencing of a fragment of the 16S rRNA gene sequence (rrs). NP content was determined by high-performance liquid chromatography. The novel NP-degrading bacterium Raoultella planticola F8 was isolated from the bottom sediments sampled in the Gulf of Finland. R. planticola F8 isolate was deposited in the Russian Collection of Agricultural Microorganisms (RCAM), All-Russia Research Institute for Agricultural Microbiology, as the strain RCAM 05450. The rrs sequence of the F8 isolate was deposited in the GenBank database (No. OL831016). This strain is highly efficient for NP degradation in aerobic conditions at different NP concentrations (up to 900 mg·L−1), in the temperature range of +5…+35 °C, the initial pH range of 5–9, and the dissolved oxygen concentration range of 0.8–2.46 mg·L−1. This is the first study to demonstrate the ability of R. planticola to degrade NP. Results of this investigation provide useful information for R. planticola F8 application in bioremediation processes.


T. Zaytseva

senior researcher, PhD



V. Safronova

leading researcher, PhD



A. Russu

junior researcher



I. Kuzikova

leading researcher, PhD



N. Medvedeva

chief researcher, head of the laboratory, D. Sc.




Abatenh E., Gizaw B., Tsegaye Z., Wassie M. The role of microorganisms in bioremediation – a review. Open Journal of Environmental Microbiology, 2017, vol. 2, iss. 1, pp. 038–046. https://doi.org/10.17352/ojeb.000007

Alneyadi A. H., Shah I., AbuQamar S. F., Ashraf S. S. Differential degradation and detoxification of an aromatic pollutant by two different peroxidases. Biomolecules, 2017, vol. 7, iss. 1, art. no. 31 (18 p.). https://doi.org/10.3390/biom7010031

Bai N., Abuduaini R., Wang S., Zhang M., Zhu X., Zhao Y. Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2. Environmental Pollution, 2017, vol. 220, pt A, pp. 95–104. https://doi.org/10.1016/j.envpol.2016.09.027

Baptista M. S., Stoichev T., Basto M. C. P., Vasconcelos V. M., Vasconcelos M. T. S. D. Fate and effects of octylphenol in a Microcystis aeruginosa culture medium. Aquatic Toxicology, 2009, vol. 92, iss. 2, pp. 59–64. https://doi.org/10.1016/j.aquatox.2008.12.005

Barber L. B., Loyo-Rosales J. E., Rice C. P., Minarik T. A., Oskouie A. K. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions. Science of the Total Environment, 2015, vol. 517, pp. 195–206. https://doi.org/10.1016/j.scitotenv.2015.02.035

Bergey’s Manual of Determinative Bacteriology. 9th edition / D. H. Bergey, J. G. Holt (Eds). Baltimore : Williams & Wilkins, 1994, 787 p.

Bhandari G., Bagheri A. R., Bhatt P., Bilal M. Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere, 2021, vol. 275, art. no. 130013 (16 p.). https://doi.org/10.1016/j.chemosphere.2021.130013

Bhatt P., Huang Y., Zhan H., Chen S. Insight into microbial applications for the biodegradation of pyrethroid insecticides. Frontiers in Microbiology, 2019, vol. 10, art. no. 1778 (18 p.). https://doi.org/10.3389/fmicb.2019.01778

Cao B., Nagarajan K., Loh K.-C. Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 2009, vol. 85, iss. 2, pp. 207–228. https://doi.org/10.1007/s00253-009-2192-4

Corvini P. F. X., Schäffer A., Schlosser D. Microbial degradation of nonylphenol and other alkylphenols–our evolving view. Applied Microbiology and Biotechnology, 2006, vol. 72, iss. 2, pp. 223–243. https://doi.org/10.1007/s00253-006-0476-5

De Weert J., de la Cal A., van den Berg H., Murk A., Langenhoff A., Rijnaarts H., Grotenhuis T. Bioavailability and biodegradation of nonylphenol in sediment determined with chemical and bioanalysis. Environmental Toxicology and Chemistry, 2008, vol. 27, iss. 4, pp. 778–785. https://doi.org/10.1897/07-367.1

Drancourt M., Bollet C., Carta A., Rousselier P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2001, vol. 51, iss. 3, pp. 925–932. https://doi.org/10.1099/00207713-51-3-925

Feng Y., Wang A., Fu W., Song D. F. Growth performance, antioxidant response, biodegradation and transcriptome analysis of Chlorella pyrenoidosa after nonylphenol exposure. Science of the Total Environment, 2022, vol. 806, pt 1, art. no. 150507 (9 p.). https://doi.org/10.1016/j.scitotenv.2021.150507

Gabriel F. L., Giger W., Guenther K., Kohler H. P. Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Applied and Environmental Microbiology, 2005, vol. 71, no. 3, pp. 1123–1129. https://doi.org/10.1128/AEM.71.3.1123-1129.2005

Ibrahim M., Makky E. A., Azmi N. S., Ismail J. Optimization parameters for Mycobacteria confluentis biodegradation of PAHs. MATEC Web of Conferences, 2018, vol. 150, art. no. 06035 (5 p.). https://doi.org/10.1051/matecconf/201815006035

Karigar C. S., Rao S. S. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, vol. 2011, art. no. 805187 (11 p.). https://doi.org/10.4061/2011/805187

Khalid M., Abdollahi M. Environmental distribution of personal care products and their effects on human health. Iranian Journal of Pharmaceutical Research, 2021, vol. 20, iss. 1, pp. 216–253. https://doi.org/10.22037/ijpr.2021.114891.15088

Khan S. A., Hamayun M., Khan A. L., Ahmad B., Ahmed S., Lee I.-J. Influence of pH, temperature and glucose on biodegradation of 4-aminophenol by a novel bacterial strain, Pseudomonas sp. ST-4. African Journal of Biotechnology, 2009, vol. 8, no. 16, pp. 3827–3831.

Kimura Z., Chung K. M., Itoh H., Hiraishi A., Okabe S. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 2014, vol. 64, iss. pt_4, pp. 1384–1388. https://doi.org/10.1099/ijs.0.058826-0

Krige N. R., Padgtt P. J. Phenotypic and physiological characterization methods. In: Taxonomy of Prokaryotes / F. Rainey, A. Oren (Eds). London ; San Diego ; Waltham ; Amsterdam : Academic Press, 2011, pp. 15–60. (Methods in Microbiology ; vol. 38). https://doi.org/10.1016/B978-0-12-387730-7.00003-6

Kuzikova I., Rybalchenko O., Kurashov E., Krylova Y., Safronova V., Medvedeva N. Defense responses of the marine-derived fungus Aspergillus tubingensis to alkylphenols stress. Water, Air, & Soil Pollution. An International Journal of Environmental Pollution, 2020, vol. 231, iss. 6, art. no. 271 (18 p.). https://doi.org/10.1007/s11270-020-04639-2

Lakshmi M. V. V. C., Sridevi V. Effect of pH and inoculum size on phenol degradation by Pseudomonas aeruginosa (NCIM 2074). International Journal of Chemical Sciences, 2009, vol. 7, iss. 4, pp. 2246–2252.

Liu Y., Chang H., Li Z., Feng Y., Cheng D., Xue J. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage. Scientific Reports, 2017, vol. 7, art. no. 11004 (11 p.). https://doi.org/10.1038/s41598-017-11529-x

Ma J., Chen F., Tang Y., Wang X. Research on degradation characteristics of nonylphenol in water by highly effective complex microorganisms. E3S Web of Conferences, 2018, vol. 53, art. no. 04016 (7 p.). https://doi.org/10.1051/e3sconf/20185304016

Mao Z., Zheng X.-F., Zhang Y.-Q., Tao X.-X., Li Y., Wang W. Occurrence and biodegradation of nonylphenol in the environment. International Journal of Molecular Sciences, 2012, vol. 13, iss. 1, pp. 491–505. https://doi.org/10.3390/ijms13010491

Palyzová A., Zahradník J., Marešová H., Řezanka T. Characterization of the catabolic pathway of diclofenac in Raoultella sp. KDF8. International Biodeterioration & Biodegradation, 2019, vol. 137, pp. 88–94. https://doi.org/10.1016/j.ibiod.2018.11.013

Ping L., Guo Q., Chen X., Yuan X., Zhang C., Zhao H. Biodegradation of pyrene and benzo[a]pyrene in the liquid matrix and soil by a newly identified Raoultella planticola strain. 3 Biotech, 2017, vol. 7, iss. 1, art. no. 56 (10 p.). https://doi.org/10.1007/s13205-017-0704-y

Rajendran R. K., Huang S.-L., Lin C.-C., Kirschner R. Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresource Technology, 2017, vol. 226, pp. 55–64. https://doi.org/10.1016/j.biortech.2016.11.129

Reddy M. V., Yajima Y., Choi D. B., Chang Y.-C. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. Biotechnology and Bioprocess Engineering, 2017, vol. 22, iss. 3, pp. 339–346. https://doi.org/10.1007/s12257-017-0117-0

Soares A., Guieysse B., Jefferson B., Cartmell E., Lester J. N. Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 2008, vol. 34, iss. 7, pp. 1033–1049. https://doi.org/10.1016/j.envint.2008.01.004

Solé M., López de Alda M. J., Castillo M., Porte C., Ladegaard-Pedersen K., Barceló D. Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain). Environmental Science & Technology, 2000, vol. 34, iss. 24, pp. 5076–5083. https://doi.org/10.1021/es991335n

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, vol. 28, iss. 10, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121

Tuan N. N., Hsieh H.-C., Lin Y.-W., Huang S.-L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresource Technology, 2011, vol. 102, iss. 5, pp. 4232–4240. https://doi.org/10.1016/j.biortech.2010.12.067

Uĝuz C., İşcan M., Togan İ. Alkylphenols in the environment and their adverse effects on living organisms. Kocatepe Veterinary Journal, 2009, vol. 2, iss. 1, pp. 49–58.

Vallini G., Frassinetti S., D’Andrea F., Catelani G., Agnolucci M. Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: Identification of microbial breakdown products and proposal of a possible metabolic pathway. International Biodeterioration & Biodegradation, 2001, vol. 47, iss. 3, pp. 133–140. https://doi.org/10.1016/S0964-8305(01)00040-3

Wang Z., Yang Y., Dai Y., Xie S. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community. Journal of Hazardous Materials, 2015a, vol. 286, pp. 306–314. https://doi.org/10.1016/j.jhazmat.2014.12.057

Wang Z., Yang Y., He T., Xie S. Change of microbial community structure and functional gene abundance in nonylphenol-degrading sediment. Applied Microbiology and Biotechnology, 2015b, vol. 99, iss. 7, pp. 3259–3268. https://doi.org/10.1007/s00253-014-6222-5

Watanabe W., Hori Y., Nishimura S., Takagi A., Kikuchi M., Sawai J. Bacterial degradation and reduction in the estrogen activity of 4-nonylphenol. Biocontrol Science, 2012, vol. 17, iss. 3, pp. 143–147. https://doi.org/10.4265/bio.17.143

Water Quality – Determination of Dissolved Oxygen – Iodometric Method (ISO Standard No. 5813:1983). ISO. International Organization for Standardization, 1983. https://www.iso.org/standard/11959.html

Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, vol. 173, no. 2, pp. 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Xie Y., Pan Y., Bai B., Xu Z., Ding L., Li Q., Xu Y., Zhu T. Degradation performance and optimal parameters of two bacteria in degrading nonylphenol. Journal of Computational and Theoretical Nanoscience, 2015, vol. 12, no. 9, pp. 2657–2663. https://doi.org/10.1166/jctn.2015.4159

Yang Z., Shi Y., Zhang Y., Cheng Q., Li X., Zhao C., Zhang D. Different pathways for 4-n-nonylphenol biodegradation by two Aspergillus strains derived from estuary sediment: Evidence from metabolites determination and key-gene identification. Journal of Hazardous Materials, 2018, vol. 359, pp. 203–212. https://doi.org/10.1016/j.jhazmat.2018.07.058

Zaytseva T. B., Medvedeva N. G. Sorption and biodegradation of octyl- and nonylphenols by the cyanobacterium Planktothrix agardhii (Gomont) Anagn. & Komárek. Inland Water Biology, 2019, vol. 12, iss. 3, pp. 337–345. https://doi.org/10.1134/s1995082919030192


This work was supported by the state assignment of the Ministry of Science and Higher Education of the Russian Federation (No. 122041100086-5). Strain identification was supported by the Russian Science Foundation (grant No. 21-16-00084).



Download data is not yet available.