Experience of growing the microalga Tisochrysis lutea (Haptophyta) under conditions of a Labfors bioreactor for the production of carotenoids and neutral lipids
##plugins.themes.ibsscustom.article.main##
##plugins.themes.ibsscustom.article.details##
Abstract
The results of the experiment on the use of a Labfors 5 Lux LED flat panel bioreactor (Infors HT, Switzerland) for Tisochrysis lutea (Haptophyta) cultivation are presented. During the three-week study, growth and size structure of the microalga population were assessed, and the content of chlorophyll a, carotenoids, and neutral lipids was estimated. The highest cell abundance, 5.3 × 104 cells·mL−1, was recorded at the end of the experiment, on the 21st day. An increase in the proportion of 4–6-μm cells was registered on the 11th day. The maximum accumulation of carotenoids occurred on the 18th day (3.3 mg·L−1), and neutral lipids (Nile Red fluorescence was of 5.3 × 106), on the 14th–21st day. As revealed, Labfors 5 Lux LED flat panel bioreactor can be successfully used for cultivation of the microalga T. lutea.
Authors
References
Alemán-Nava G. S., Cuellar-Bermudez S. P., Cuaresma M., Bosma R., Muylaert K., Ritmann B. E., Parra R. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. Journal of Microbiological Methods, 2016, vol. 128, pp. 74–79. https://doi.org/10.1016/j.mimet.2016.07.011
Alkhamis Y., Qin J. G. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of Applied Phycology, 2016, vol. 28, iss. 1, pp. 35–42. https://doi.org/10.1007/s10811-015-0599-0
Araújo R., Vázquez Calderón F., Sánchez López J., Azevedo I. C., Bruhn A., Fluch S., Garcia Tasende M., Ghaderiardakani F., Ilmjärv T., Laurans M., Mac Monagail M., Mangini S., Peteiro C., Rebours C., Stefansson T., Ullmann J. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Frontiers in Marine Science, 2020, vol. 7, art no. 626389 (24 p.). https://doi.org/10.3389/fmars.2020.626389
Gao F., Teles I., Wijffels R. H., Barbosa M. J. Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresource Technology, 2020, vol. 315, art. no. 123894 (8 p.). https://doi.org/10.1016/j.biortech.2020.123894
Guedes A. C., Malcata F. Bioreactors for microalgae: A review of designs, features and applications. In: Bioreactors: Design, Properties and Applications / P. G. Antolli, Z. Liu (Eds). New-York : Nova Scientist Publishers, Inc., 2011, pp. 1–52.
Costa F. D., Le Grand F., Quéré C., Bougaran G., Cadoret J. P., Robert R., Soudant P. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea. Algal Research–Biomass, Biofuels and Bioproducts, 2017, vol. 27, pp. 177–189. https://doi.org/10.1016/j.algal.2017.09.003
Chioccioli M., Hankamer B., Ross I. L. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS One, 2014, vol. 9, iss. 5, art. no. e97269 (12 p.). https://doi.org/10.1371/journal.pone.0097269
Gnouma A., Sadovskaya I., Souissi A., Sebai K., Medhioub A., Grard T., Souissi S. Changes in fatty acids profile, monosaccharide profile and protein content during batch growth of Isochrysis galbana (T.iso). Aquaculture Research, 2017, vol. 48, iss. 9, pp. 4982–4990. https://doi.org/10.1111/are.13316
Guillard R. R. L., Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029
Falinski K. A., Timmons M. B., Callan C., Laidley C. Response of Tisochrysis lutea [Prymnesiophycidae] to aeration conditions in a bench-scale photobioreactor. Journal of Applied Phycology, 2018, vol. 30, iss. 4, pp. 2203–2214. https://doi.org/10.1007/s10811-018-1453-y
Hyka P., Lickova S., Přibyl P., Melzoch K., Kovar K. Flow cytometry for development of biotechnological processes with microalgae. Biotechnology Advances, 2013, vol. 31, iss. 1, pp. 2–16. https://doi.org/10.1016/j.biotechadv.2012.04.007
Hu H., Ma L. L., Shen X. F., Wang H. F., Zeng R. J. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express, 2018, vol. 8, art. no. 50 (12 p.). https://doi.org/10.1186/s13568-018-0580-9
Huang B., Marchand J., Thiriet-Rupert S., Carrier G., Saint-Jean B., Lukomska E., Moreau B., Morant-Manceau A., Bougaran G., Mimouni V. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal Research–Biomass, Biofuels and Bioproducts, 2019, vol. 40, art. no. 101506 (15 p.). https://doi.org/10.1016/j.algal.2019.101506
Ippoliti D., González A., Martín I., Sevilla J. M. F., Pistocchi R., Acién F. G. Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. Journal of Applied Phycology, 2016, vol. 28, iss. 6, pp. 3159–3166. https://doi.org/10.1007/s10811-016-0856-x
Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 1975, vol. 167, iss. 2, pp. 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3
Leal E., de Beyer L., O’Connor W., Dove M., Ralph P. J., Pernice M. Production optimization of Tisochrysis lutea as a live feed for juvenile Sydney rock oysters, Saccostrea glomerata, using large-scale photobioreactors. Aquaculture, 2020, vol. 533, art. no. 736077 (9 p.). https://doi.org/10.1016/j.aquaculture.2020.736077
Mohamadnia S., Tavakoli O., Faramarzi M. A. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture, 2021, vol. 533, art. no. 736074 (10 p.). https://doi.org/10.1016/j.aquaculture.2020.736074
Mohamadnia S., Tavakoli O., Faramarzi M. A., Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments. Aquaculture, 2020, vol. 516, art. no. 734637 (10 p.). https://doi.org/10.1016/j.aquaculture.2019.734637
Posten C. Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 2009, vol. 9, iss. 3, pp. 165–177. https://doi.org/10.1002/elsc.200900003
Rasdi N. W., Qin J. G. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of Applied Phycology, 2015, vol. 27, iss. 6, pp. 2221–2230. https://doi.org/10.1007/s10811-014-0495-z
Tan J. S., Lee S. Y., Chew K. W., Lam M. K., Lim J. W., Ho S. H., Show P. L. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 2020, vol. 11, iss. 1, pp. 116–129. https://doi.org/10.1080/21655979.2020.1711626