##plugins.themes.bootstrap3.article.main##

Маркина Ж. В., Зинов А. А., Орлова Т. Ю. Опыт выращивания микроводоросли Tisochrysis lutea (Haptophyta) в условиях биореактора Labfors для продуцирования каротиноидов и нейтральных липидов // Морской биологический журнал. 2024. Т. 9, № 1. С. 70-75. https://doi.org/10.21072/mbj.2024.09.1.05

##plugins.themes.bootstrap3.article.details##

Аннотация

Приведены результаты эксперимента по использованию биореактора панельного типа Labfors 5 Lux LED flat panel (Infors HT, Швейцария) для культивирования Tisochrysis lutea (Haptophyta). В ходе трёхнедельного исследования оценивали рост и размерную структуру популяции микроводоросли, содержание хлорофилла a, каротиноидов и нейтральных липидов. Максимальная численность клеток, 5,3 × 104 кл.·мл−1, зафиксирована к концу эксперимента, на 21-е сутки. Увеличение доли клеток размером 4–6 мкм регистрировали на 11-е сутки опыта. Наибольшее накопление каротиноидов происходило на 18-е сутки эксперимента (3,3 мг·л−1), нейтральных липидов (флуоресценция Nile Red составляла 5,3 × 106) — на 14–21-е сутки. Выявлено, что биореактор панельного типа Labfors 5 может быть успешно использован для культивирования микроводоросли T. lutea.

Авторы

Ж. В. Маркина

н. с., к. б. н.

https://orcid.org/0000-0001-7135-1375

https://elibrary.ru/author_items.asp?id=251096

А. А. Зинов

инженер

https://elibrary.ru/author_items.asp?id=1071767

Т. Ю. Орлова

гл. н. с., к. б. н.

https://orcid.org/0000-0002-5246-6967

https://elibrary.ru/author_items.asp?id=85603

Библиографические ссылки

Alemán-Nava G. S., Cuellar-Bermudez S. P., Cuaresma M., Bosma R., Muylaert K., Ritmann B. E., Parra R. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. Journal of Microbiological Methods, 2016, vol. 128, pp. 74–79. https://doi.org/10.1016/j.mimet.2016.07.011

Alkhamis Y., Qin J. G. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of Applied Phycology, 2016, vol. 28, iss. 1, pp. 35–42. https://doi.org/10.1007/s10811-015-0599-0

Araújo R., Vázquez Calderón F., Sánchez López J., Azevedo I. C., Bruhn A., Fluch S., Garcia Tasende M., Ghaderiardakani F., Ilmjärv T., Laurans M., Mac Monagail M., Mangini S., Peteiro C., Rebours C., Stefansson T., Ullmann J. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Frontiers in Marine Science, 2020, vol. 7, art no. 626389 (24 p.). https://doi.org/10.3389/fmars.2020.626389

Gao F., Teles I., Wijffels R. H., Barbosa M. J. Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresource Technology, 2020, vol. 315, art. no. 123894 (8 p.). https://doi.org/10.1016/j.biortech.2020.123894

Guedes A. C., Malcata F. Bioreactors for microalgae: A review of designs, features and applications. In: Bioreactors: Design, Properties and Applications / P. G. Antolli, Z. Liu (Eds). New-York : Nova Scientist Publishers, Inc., 2011, pp. 1–52.

Costa F. D., Le Grand F., Quéré C., Bougaran G., Cadoret J. P., Robert R., Soudant P. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea. Algal Research–Biomass, Biofuels and Bioproducts, 2017, vol. 27, pp. 177–189. https://doi.org/10.1016/j.algal.2017.09.003

Chioccioli M., Hankamer B., Ross I. L. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS One, 2014, vol. 9, iss. 5, art. no. e97269 (12 p.). https://doi.org/10.1371/journal.pone.0097269

Gnouma A., Sadovskaya I., Souissi A., Sebai K., Medhioub A., Grard T., Souissi S. Changes in fatty acids profile, monosaccharide profile and protein content during batch growth of Isochrysis galbana (T.iso). Aquaculture Research, 2017, vol. 48, iss. 9, pp. 4982–4990. https://doi.org/10.1111/are.13316

Guillard R. R. L., Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 1962, vol. 8, no. 2, pp. 229–239. https://doi.org/10.1139/m62-029

Falinski K. A., Timmons M. B., Callan C., Laidley C. Response of Tisochrysis lutea [Prymnesiophycidae] to aeration conditions in a bench-scale photobioreactor. Journal of Applied Phycology, 2018, vol. 30, iss. 4, pp. 2203–2214. https://doi.org/10.1007/s10811-018-1453-y

Hyka P., Lickova S., Přibyl P., Melzoch K., Kovar K. Flow cytometry for development of biotechnological processes with microalgae. Biotechnology Advances, 2013, vol. 31, iss. 1, pp. 2–16. https://doi.org/10.1016/j.biotechadv.2012.04.007

Hu H., Ma L. L., Shen X. F., Wang H. F., Zeng R. J. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea. AMB Express, 2018, vol. 8, art. no. 50 (12 p.). https://doi.org/10.1186/s13568-018-0580-9

Huang B., Marchand J., Thiriet-Rupert S., Carrier G., Saint-Jean B., Lukomska E., Moreau B., Morant-Manceau A., Bougaran G., Mimouni V. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal Research–Biomass, Biofuels and Bioproducts, 2019, vol. 40, art. no. 101506 (15 p.). https://doi.org/10.1016/j.algal.2019.101506

Ippoliti D., González A., Martín I., Sevilla J. M. F., Pistocchi R., Acién F. G. Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. Journal of Applied Phycology, 2016, vol. 28, iss. 6, pp. 3159–3166. https://doi.org/10.1007/s10811-016-0856-x

Jeffrey S. W., Humphrey G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 1975, vol. 167, iss. 2, pp. 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3

Leal E., de Beyer L., O’Connor W., Dove M., Ralph P. J., Pernice M. Production optimization of Tisochrysis lutea as a live feed for juvenile Sydney rock oysters, Saccostrea glomerata, using large-scale photobioreactors. Aquaculture, 2020, vol. 533, art. no. 736077 (9 p.). https://doi.org/10.1016/j.aquaculture.2020.736077

Mohamadnia S., Tavakoli O., Faramarzi M. A. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture, 2021, vol. 533, art. no. 736074 (10 p.). https://doi.org/10.1016/j.aquaculture.2020.736074

Mohamadnia S., Tavakoli O., Faramarzi M. A., Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments. Aquaculture, 2020, vol. 516, art. no. 734637 (10 p.). https://doi.org/10.1016/j.aquaculture.2019.734637

Posten C. Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 2009, vol. 9, No. 3, pp. 165-177.

Rasdi N. W., Qin J. G. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of Applied Phycology, 2015, vol. 27, iss. 6, pp. 2221–2230. https://doi.org/10.1007/s10811-014-0495-z

Tan J. S., Lee S. Y., Chew K. W., Lam M. K., Lim J. W., Ho S. H., Show P. L. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 2020, vol. 11, iss. 1, pp. 116–129. https://doi.org/10.1080/21655979.2020.1711626

Финансирование

Работа выполнена в рамках государственного задания ННЦМБ ДВО РАН «Динамика морских экосистем, адаптации морских организмов и сообществ к изменениям среды обитания» (№ гос. регистрации 121082600038-3) и при финансовой поддержке гранта Российского научного фонда № 21-74-30004.

Статистика

Скачивания

Данные скачивания пока недоступны.